These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26565892)

  • 1. High-throughput linear optical stretcher for mechanical characterization of blood cells.
    Roth KB; Neeves KB; Squier J; Marr DW
    Cytometry A; 2016 Apr; 89(4):391-7. PubMed ID: 26565892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring cell mechanics by optical alignment compression cytometry.
    Roth KB; Eggleton CD; Neeves KB; Marr DW
    Lab Chip; 2013 Apr; 13(8):1571-7. PubMed ID: 23440063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of a linear diode bar for an optical cell stretcher.
    Roth KB; Neeves KB; Squier J; Marr DW
    Biomed Opt Express; 2015 Mar; 6(3):807-14. PubMed ID: 25798305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optofluidic "tweeze-and-drag" cell stretcher in a microfluidic channel.
    Yao Z; Kwan CC; Poon AW
    Lab Chip; 2020 Feb; 20(3):601-613. PubMed ID: 31909404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry.
    Fregin B; Czerwinski F; Biedenweg D; Girardo S; Gross S; Aurich K; Otto O
    Nat Commun; 2019 Jan; 10(1):415. PubMed ID: 30679420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrocyte deformation in high-throughput optical stretchers.
    Sraj I; Szatmary AC; Desai SA; Marr DW; Eggleton CD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041923. PubMed ID: 22680514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping.
    Deng Y; Davis SP; Yang F; Paulsen KS; Kumar M; Sinnott DeVaux R; Wang X; Conklin DS; Oberai A; Herschkowitz JI; Chung AJ
    Small; 2017 Jul; 13(28):. PubMed ID: 28544415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation of phospholipid vesicles in an optical stretcher.
    Delabre U; Feld K; Crespo E; Whyte G; Sykes C; Seifert U; Guck J
    Soft Matter; 2015 Aug; 11(30):6075-88. PubMed ID: 26135540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformability-based flow cytometry.
    Lincoln B; Erickson HM; Schinkinger S; Wottawah F; Mitchell D; Ulvick S; Bilby C; Guck J
    Cytometry A; 2004 Jun; 59(2):203-9. PubMed ID: 15170599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping.
    Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW
    Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications.
    Lincoln B; Schinkinger S; Travis K; Wottawah F; Ebert S; Sauer F; Guck J
    Biomed Microdevices; 2007 Oct; 9(5):703-10. PubMed ID: 17505883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell elongation via intrinsic antipodal stretching forces.
    Sawetzki T; Eggleton CD; Marr DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061901. PubMed ID: 23367970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells.
    Herbig M; Kräter M; Plak K; Müller P; Guck J; Otto O
    Methods Mol Biol; 2018; 1678():347-369. PubMed ID: 29071686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.
    Mietke A; Otto O; Girardo S; Rosendahl P; Taubenberger A; Golfier S; Ulbricht E; Aland S; Guck J; Fischer-Friedrich E
    Biophys J; 2015 Nov; 109(10):2023-36. PubMed ID: 26588562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level.
    Yang T; Bragheri F; Minzioni P
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis.
    Gnyawali V; Strohm EM; Wang JZ; Tsai SSH; Kolios MC
    Sci Rep; 2019 Feb; 9(1):1585. PubMed ID: 30733497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [High throughput detection and characterization of red blood cells deformability by combining optical tweezers with microfluidic technique].
    Zhang M; Meng X; Zhu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):848-854. PubMed ID: 33140609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows.
    Forsyth AM; Wan J; Ristenpart WD; Stone HA
    Microvasc Res; 2010 Jul; 80(1):37-43. PubMed ID: 20303993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell deformation cytometry using diode-bar optical stretchers.
    Sraj I; Eggleton CD; Jimenez R; Hoover E; Squier J; Chichester J; Marr DW
    J Biomed Opt; 2010; 15(4):047010. PubMed ID: 20799841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.