BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 26565921)

  • 21. Effects of the Surface Morphology and Conformations of Lignocellulosic Biomass Biopolymers on Their Nanoscale Interactions with Hydrophobic Self-Assembled Monolayers.
    Arslan B; Egerton K; Zhang X; Abu-Lail NI
    Langmuir; 2017 Jul; 33(27):6857-6868. PubMed ID: 28617601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between surfactants and hydrolytic enzymes.
    Holmberg K
    Colloids Surf B Biointerfaces; 2018 Aug; 168():169-177. PubMed ID: 29248277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption.
    Rahikainen JL; Martin-Sampedro R; Heikkinen H; Rovio S; Marjamaa K; Tamminen T; Rojas OJ; Kruus K
    Bioresour Technol; 2013 Apr; 133():270-8. PubMed ID: 23428824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The laccase-catalyzed modification of lignin for enzymatic hydrolysis.
    Moilanen U; Kellock M; Galkin S; Viikari L
    Enzyme Microb Technol; 2011 Dec; 49(6-7):492-8. PubMed ID: 22142723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Bioresour Technol; 2011 Mar; 102(6):4507-17. PubMed ID: 21256740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose.
    Ko JK; Kim Y; Ximenes E; Ladisch MR
    Biotechnol Bioeng; 2015 Feb; 112(2):252-62. PubMed ID: 25082660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interplays of enzyme, substrate, and surfactant on hydrolysis of native lignocellulosic biomass.
    Lee S; Akeprathumchai S; Bundidamorn D; Salaipeth L; Poomputsa K; Ratanakhanokchai K; Chang KL; Phitsuwan P
    Bioengineered; 2021 Dec; 12(1):5110-5124. PubMed ID: 34369275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.
    Arslan B; Colpan M; Ju X; Zhang X; Kostyukova A; Abu-Lail NI
    Biomacromolecules; 2016 May; 17(5):1705-15. PubMed ID: 27065303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.
    Selig MJ; Viamajala S; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Prog; 2007; 23(6):1333-9. PubMed ID: 17973399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass.
    Shang Y; Su R; Huang R; Yang Y; Qi W; Li Q; He Z
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5765-74. PubMed ID: 24752845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass.
    Dos Santos AC; Ximenes E; Kim Y; Ladisch MR
    Trends Biotechnol; 2019 May; 37(5):518-531. PubMed ID: 30477739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the surface interactions of proteins with lignin.
    Salas C; Rojas OJ; Lucia LA; Hubbe MA; Genzer J
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):199-206. PubMed ID: 23234476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism.
    Guo F; Shi W; Sun W; Li X; Wang F; Zhao J; Qu Y
    Biotechnol Biofuels; 2014 Mar; 7(1):38. PubMed ID: 24624960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose.
    Lai C; Tu M; Shi Z; Zheng K; Olmos LG; Yu S
    Bioresour Technol; 2014 Jul; 163():320-7. PubMed ID: 24835744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellulases adsorb reversibly on biomass lignin.
    Djajadi DT; Pihlajaniemi V; Rahikainen J; Kruus K; Meyer AS
    Biotechnol Bioeng; 2018 Dec; 115(12):2869-2880. PubMed ID: 30132790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Monolayers and Lignocellulosic Substrates: A Chemical Force Microscopy Study.
    Arslan B; Ju X; Zhang X; Abu-Lail NI
    Langmuir; 2015 Sep; 31(37):10233-45. PubMed ID: 26339982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.
    Tu M; Pan X; Saddler JN
    J Agric Food Chem; 2009 Sep; 57(17):7771-8. PubMed ID: 19722706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced type-A carbohydrate-binding module interactions to cellulose I leads to improved endocellulase activity.
    Nemmaru B; Ramirez N; Farino CJ; Yarbrough JM; Kravchenko N; Chundawat SPS
    Biotechnol Bioeng; 2021 Mar; 118(3):1141-1151. PubMed ID: 33245142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects.
    Li X; Zheng Y
    Biotechnol Adv; 2017 Jul; 35(4):466-489. PubMed ID: 28351654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.