These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 26565922)
1. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode. Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922 [TBL] [Abstract][Full Text] [Related]
2. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641 [TBL] [Abstract][Full Text] [Related]
3. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting. Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720 [TBL] [Abstract][Full Text] [Related]
4. Core-shell photoanode developed by atomic layer deposition of Bi₂O₃ on Si nanowires for enhanced photoelectrochemical water splitting. Weng B; Xu F; Xu J Nanotechnology; 2014 Nov; 25(45):455402. PubMed ID: 25338216 [TBL] [Abstract][Full Text] [Related]
5. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting. Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730 [TBL] [Abstract][Full Text] [Related]
6. α-Fe2O3@PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. Lu XF; Chen XY; Zhou W; Tong YX; Li GR ACS Appl Mater Interfaces; 2015 Jul; 7(27):14843-50. PubMed ID: 26090902 [TBL] [Abstract][Full Text] [Related]
7. ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications. Zhong M; Sato Y; Kurniawan M; Apostoluk A; Masenelli B; Maeda E; Ikuhara Y; Delaunay JJ Nanotechnology; 2012 Dec; 23(49):495602. PubMed ID: 23150203 [TBL] [Abstract][Full Text] [Related]
8. TiO2 nanocrystals shell layer on highly conducting indium tin oxide nanowire for photovoltaic devices. Han HS; Kim JS; Kim DH; Han GS; Jung HS; Noh JH; Hong KS Nanoscale; 2013 Apr; 5(8):3520-6. PubMed ID: 23493975 [TBL] [Abstract][Full Text] [Related]
9. Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting. Xiong Z; Zheng M; Liu S; Ma L; Shen W Nanotechnology; 2013 Jul; 24(26):265402. PubMed ID: 23733303 [TBL] [Abstract][Full Text] [Related]
10. Facile Synthesis of Ultrafine Hematite Nanowire Arrays in Mixed Water-Ethanol-Acetic Acid Solution for Enhanced Charge Transport and Separation. Wang J; Wang M; Zhang T; Wang Z; Guo P; Su J; Guo L ACS Appl Mater Interfaces; 2018 Apr; 10(15):12594-12602. PubMed ID: 29577716 [TBL] [Abstract][Full Text] [Related]
11. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene. Yoon KY; Lee JS; Kim K; Bak CH; Kim SI; Kim JB; Jang JH ACS Appl Mater Interfaces; 2014 Dec; 6(24):22634-9. PubMed ID: 25469502 [TBL] [Abstract][Full Text] [Related]
12. ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting. Zhong M; Li Y; Yamada I; Delaunay JJ Nanoscale; 2012 Mar; 4(5):1509-14. PubMed ID: 22200054 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510 [TBL] [Abstract][Full Text] [Related]
14. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting. Li X; Lu W; Dong W; Chen Q; Wu D; Zhou W; Chen L Nanoscale; 2013 Jun; 5(12):5257-61. PubMed ID: 23652765 [TBL] [Abstract][Full Text] [Related]
15. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles. Chen B; Fan W; Mao B; Shen H; Shi W Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164 [TBL] [Abstract][Full Text] [Related]
16. Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting. Hsu YK; Chen YC; Lin YG ACS Appl Mater Interfaces; 2015 Jul; 7(25):14157-62. PubMed ID: 26053274 [TBL] [Abstract][Full Text] [Related]
17. Chemical Vapor Deposition of FeOCl Nanosheet Arrays and Their Conversion to Porous α-Fe2 O3 Photoanodes for Photoelectrochemical Water Splitting. Wang CW; Yang S; Jiang HB; Yang H Chemistry; 2015 Dec; 21(50):18024-8. PubMed ID: 26507080 [TBL] [Abstract][Full Text] [Related]
18. Engineering the interfaces of ITO@Cu2S nanowire arrays toward efficient and stable counter electrodes for quantum-dot-sensitized solar cells. Jiang Y; Zhang X; Ge QQ; Yu BB; Zou YG; Jiang WJ; Hu JS; Song WG; Wan LJ ACS Appl Mater Interfaces; 2014 Sep; 6(17):15448-55. PubMed ID: 25137502 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition. Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting. Miao J; Yang HB; Khoo SY; Liu B Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]