BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26565985)

  • 1. Chirality-dependent densities of carbon nanotubes by in situ 2D fluorescence-excitation and Raman characterisation in a density gradient after ultracentrifugation.
    Cambré S; Muyshondt P; Federicci R; Wenseleers W
    Nanoscale; 2015 Dec; 7(47):20015-24. PubMed ID: 26565985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of surfactants in carbon nanotubes density gradient separation.
    Carvalho EJ; dos Santos MC
    ACS Nano; 2010 Feb; 4(2):765-70. PubMed ID: 20055484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing surfactant structures on length and chirality resolved (6,5) single-wall carbon nanotubes by analytical ultracentrifugation.
    Fagan JA; Zheng M; Rastogi V; Simpson JR; Khripin CY; Silvera Batista CA; Hight Walker AR
    ACS Nano; 2013 Apr; 7(4):3373-87. PubMed ID: 23530719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation.
    Subbaiyan NK; Cambré S; Parra-Vasquez AN; Hároz EH; Doorn SK; Duque JG
    ACS Nano; 2014 Feb; 8(2):1619-28. PubMed ID: 24450507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of empty and water-filled single-wall carbon nanotubes.
    Fagan JA; Huh JY; Simpson JR; Blackburn JL; Holt JM; Larsen BA; Walker AR
    ACS Nano; 2011 May; 5(5):3943-53. PubMed ID: 21480636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing carbon nanotube-surfactant interactions with two-dimensional DOSY NMR.
    Shastry TA; Morris-Cohen AJ; Weiss EA; Hersam MC
    J Am Chem Soc; 2013 May; 135(18):6750-3. PubMed ID: 23369051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation.
    Jang M; Kim S; Jeong H; Ju SY
    Nanotechnology; 2016 Oct; 27(41):41LT01. PubMed ID: 27595315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Chirality (6,4) Single-Walled Carbon Nanotubes for Fluorescence Imaging with Silicon Detectors.
    Antaris AL; Yaghi OK; Hong G; Diao S; Zhang B; Yang J; Chew L; Dai H
    Small; 2015 Dec; 11(47):6325-30. PubMed ID: 26529611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction.
    Avramenko M; Defillet J; López Carrillo MÁ; Martinati M; Wenseleers W; Cambré S
    Nanoscale; 2022 Oct; 14(41):15484-15497. PubMed ID: 36226764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic characterization of surfactant encapsulated carbon nanotubes using an analytical ultracentrifuge.
    Arnold MS; Suntivich J; Stupp SI; Hersam MC
    ACS Nano; 2008 Nov; 2(11):2291-300. PubMed ID: 19206395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of endohedral water on diameter sorting of single-walled carbon nanotubes by density gradient centrifugation.
    Quintillá A; Hennrich F; Lebedkin S; Kappes MM; Wenzel W
    Phys Chem Chem Phys; 2010 Jan; 12(4):902-8. PubMed ID: 20066375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation.
    Ghosh S; Bachilo SM; Weisman RB
    Nat Nanotechnol; 2010 Jun; 5(6):443-50. PubMed ID: 20453856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative theory of adsorptive separation for the electronic sorting of single-walled carbon nanotubes.
    Jain RM; Tvrdy K; Han R; Ulissi Z; Strano MS
    ACS Nano; 2014 Apr; 8(4):3367-79. PubMed ID: 24606316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorting carbon nanotubes for electronics.
    Martel R
    ACS Nano; 2008 Nov; 2(11):2195-9. PubMed ID: 19206382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorting carbon nanotubes by electronic structure using density differentiation.
    Arnold MS; Green AA; Hulvat JF; Stupp SI; Hersam MC
    Nat Nanotechnol; 2006 Oct; 1(1):60-5. PubMed ID: 18654143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and diameter-sorting of empty (end-capped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation.
    Cambré S; Wenseleers W
    Angew Chem Int Ed Engl; 2011 Mar; 50(12):2764-8. PubMed ID: 21387483
    [No Abstract]   [Full Text] [Related]  

  • 18. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.
    Engtrakul C; Irurzun VM; Gjersing EL; Holt JM; Larsen BA; Resasco DE; Blackburn JL
    J Am Chem Soc; 2012 Mar; 134(10):4850-6. PubMed ID: 22332844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field.
    Nair N; Kim WJ; Braatz RD; Strano MS
    Langmuir; 2008 Mar; 24(5):1790-5. PubMed ID: 18211104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SDS surfactants on carbon nanotubes: aggregate morphology.
    Tummala NR; Striolo A
    ACS Nano; 2009 Mar; 3(3):595-602. PubMed ID: 19228060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.