BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26566070)

  • 1. Structural Chemistry of Human RNA Methyltransferases.
    Schapira M
    ACS Chem Biol; 2016 Mar; 11(3):575-82. PubMed ID: 26566070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Substrate RNA recognition mechanisms and protein structures of SPOUT, a novel super-family of RNA methyltransferases].
    Hori H
    Seikagaku; 2003 Apr; 75(4):301-5. PubMed ID: 12762229
    [No Abstract]   [Full Text] [Related]  

  • 3. Pan-cancer analysis of RNA methyltransferases identifies FTSJ3 as a potential regulator of breast cancer progression.
    Manning M; Jiang Y; Wang R; Liu L; Rode S; Bonahoom M; Kim S; Yang ZQ
    RNA Biol; 2020 Apr; 17(4):474-486. PubMed ID: 31957540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Thermus thermophilus tRNA m1A58 methyltransferase and biophysical characterization of its interaction with tRNA.
    Barraud P; Golinelli-Pimpaneau B; Atmanene C; Sanglier S; Van Dorsselaer A; Droogmans L; Dardel F; Tisné C
    J Mol Biol; 2008 Mar; 377(2):535-50. PubMed ID: 18262540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural chemistry of the histone methyltransferases cofactor binding site.
    Campagna-Slater V; Mok MW; Nguyen KT; Feher M; Najmanovich R; Schapira M
    J Chem Inf Model; 2011 Mar; 51(3):612-23. PubMed ID: 21366357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two different mechanisms for tRNA ribose methylation in Archaea: a short survey.
    Clouet-d'Orval B; Gaspin C; Mougin A
    Biochimie; 2005; 87(9-10):889-95. PubMed ID: 16164996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme.
    Nureki O; Watanabe K; Fukai S; Ishii R; Endo Y; Hori H; Yokoyama S
    Structure; 2004 Apr; 12(4):593-602. PubMed ID: 15062082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Approaches for Target Profiling of RNA Cytosine Methyltransferases.
    Khoddami V; Yerra A; Cairns BR
    Methods Enzymol; 2015; 560():273-96. PubMed ID: 26253975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in substrate selectivities of the SPOUT superfamily of methyltransferases.
    Toyooka T; Hori H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):445-6. PubMed ID: 18029778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA.
    Kuratani M; Bessho Y; Nishimoto M; Grosjean H; Yokoyama S
    J Mol Biol; 2008 Jan; 375(4):1064-75. PubMed ID: 18068186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methyltransferase inhibitors for modulation of the epigenome and beyond.
    Schapira M; Arrowsmith CH
    Curr Opin Chem Biol; 2016 Aug; 33():81-7. PubMed ID: 27318562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of PIMT, a protein with a methyltransferase domain, which interacts with and enhances nuclear receptor coactivator PRIP function.
    Zhu Y; Qi C; Cao WQ; Yeldandi AV; Rao MS; Reddy JK
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10380-5. PubMed ID: 11517327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Natural Enzymes and Synthetic Ribozymes Generate Methylated Nucleotides in RNA.
    Höbartner C; Bohnsack KE; Bohnsack MT
    Annu Rev Biochem; 2024 Apr; ():. PubMed ID: 38598854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis by the second class of tRNA(m1G37) methyl transferase requires a conserved proline.
    Christian T; Evilia C; Hou YM
    Biochemistry; 2006 Jun; 45(24):7463-73. PubMed ID: 16768442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of Mj1640/DUF358 protein reveals a putative SPOUT-class RNA methyltransferase.
    Chen HY; Yuan YA
    J Mol Cell Biol; 2010 Dec; 2(6):366-74. PubMed ID: 21098051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of a Potent Class I Protein Arginine Methyltransferase Fragment Inhibitor.
    Ferreira de Freitas R; Eram MS; Szewczyk MM; Steuber H; Smil D; Wu H; Li F; Senisterra G; Dong A; Brown PJ; Hitchcock M; Moosmayer D; Stegmann CM; Egner U; Arrowsmith C; Barsyte-Lovejoy D; Vedadi M; Schapira M
    J Med Chem; 2016 Feb; 59(3):1176-83. PubMed ID: 26824386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of protein-RNA complexes using natural RNA and mutant forms of an RNA cytosine methyltransferase.
    Redman KL
    Biomacromolecules; 2006 Dec; 7(12):3321-6. PubMed ID: 17154459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific interaction between anticodon nuclease and the tRNA(Lys) wobble base.
    Jiang Y; Meidler R; Amitsur M; Kaufmann G
    J Mol Biol; 2001 Jan; 305(3):377-88. PubMed ID: 11152597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA).
    Brzezicha B; Schmidt M; Makalowska I; Jarmolowski A; Pienkowska J; Szweykowska-Kulinska Z
    Nucleic Acids Res; 2006; 34(20):6034-43. PubMed ID: 17071714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-structure-function relationships of a tRNA (m7G46) methyltransferase studied by homology modeling and site-directed mutagenesis.
    Purta E; van Vliet F; Tricot C; De Bie LG; Feder M; Skowronek K; Droogmans L; Bujnicki JM
    Proteins; 2005 May; 59(3):482-8. PubMed ID: 15789416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.