BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26566184)

  • 21. A Critical Review of the Characterization of Polyphenol-Protein Interactions and of Their Potential Use for Improving Food Quality.
    Perez-Gregorio MR; Simal-Gandara J
    Curr Pharm Des; 2017; 23(19):2742-2753. PubMed ID: 28155599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capillary electrophoresis methods for the determination of covalent polyphenol-protein complexes.
    Trombley JD; Loegel TN; Danielson ND; Hagerman AE
    Anal Bioanal Chem; 2011 Sep; 401(5):1523-9. PubMed ID: 21400190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural modeling for DNA binding to antioxidants resveratrol, genistein and curcumin.
    N'soukpoé-Kossi CN; Bourassa P; Mandeville JS; Bekale L; Tajmir-Riahi HA
    J Photochem Photobiol B; 2015 Oct; 151():69-75. PubMed ID: 26188387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does flavor impact function? Potential consequences of polyphenol-protein interactions in delivery and bioactivity of flavan-3-ols from foods.
    Ferruzzi MG; Bordenave N; Hamaker BR
    Physiol Behav; 2012 Nov; 107(4):591-7. PubMed ID: 22387574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural polyphenols convert proteins into histone-binding ligands.
    Yamaguchi K; Itakura M; Tsukamoto M; Lim SY; Uchida K
    J Biol Chem; 2022 Nov; 298(11):102529. PubMed ID: 36162500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyphenols, food and pharma. Current knowledge and directions for future research.
    Tresserra-Rimbau A; Lamuela-Raventos RM; Moreno JJ
    Biochem Pharmacol; 2018 Oct; 156():186-195. PubMed ID: 30086286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant activity and nutrient release from polyphenol-enriched cheese in a simulated gastrointestinal environment.
    Lamothe S; Langlois A; Bazinet L; Couillard C; Britten M
    Food Funct; 2016 Mar; 7(3):1634-44. PubMed ID: 26931486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polyphenol/peptide binding and precipitation.
    Charlton AJ; Baxter NJ; Khan ML; Moir AJ; Haslam E; Davies AP; Williamson MP
    J Agric Food Chem; 2002 Mar; 50(6):1593-601. PubMed ID: 11879042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New insights on flavonoid-serum albumin interactions from concerted spectroscopic methods and molecular modeling.
    Ionescu S; Matei I; Tablet C; Hillebrand M
    Curr Drug Metab; 2013 May; 14(4):474-90. PubMed ID: 23330928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Study of the Interactions between Ovalbumin and five Antioxidants by Spectroscopic Methods.
    Li X; Yan Y
    J Fluoresc; 2017 Jan; 27(1):213-225. PubMed ID: 27722919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biophysical Study on the Interaction between Eperisone Hydrochloride and Human Serum Albumin Using Spectroscopic, Calorimetric, and Molecular Docking Analyses.
    Rabbani G; Baig MH; Lee EJ; Cho WK; Ma JY; Choi I
    Mol Pharm; 2017 May; 14(5):1656-1665. PubMed ID: 28380300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of dietary polyphenols to cellulose: structural and nutritional aspects.
    Phan AD; Netzel G; Wang D; Flanagan BM; D'Arcy BR; Gidley MJ
    Food Chem; 2015 Mar; 171():388-96. PubMed ID: 25308685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complexes of green tea polyphenol, epigalocatechin-3-gallate, and 2S albumins of peanut.
    Vesic J; Stambolic I; Apostolovic D; Milcic M; Stanic-Vucinic D; Cirkovic Velickovic T
    Food Chem; 2015 Oct; 185():309-17. PubMed ID: 25952873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of dietary polyphenols with bovine milk proteins: molecular structure-affinity relationship and influencing bioactivity aspects.
    Xiao J; Mao F; Yang F; Zhao Y; Zhang C; Yamamoto K
    Mol Nutr Food Res; 2011 Nov; 55(11):1637-45. PubMed ID: 21805622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries.
    Barreca D; Laganà G; Toscano G; Calandra P; Kiselev MA; Lombardo D; Bellocco E
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3531-3539. PubMed ID: 26971858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of iron oxidation upon polyphenol binding.
    Perron NR; Wang HC; Deguire SN; Jenkins M; Lawson M; Brumaghim JL
    Dalton Trans; 2010 Nov; 39(41):9982-7. PubMed ID: 20871896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition.
    Nedumpully-Govindan P; Kakinen A; Pilkington EH; Davis TP; Chun Ke P; Ding F
    Sci Rep; 2016 Jan; 6():19463. PubMed ID: 26763863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural Polyphenols and their Synthetic Analogs as Emerging Anticancer Agents.
    Colomer R; Sarrats A; Lupu R; Puig T
    Curr Drug Targets; 2017; 18(2):147-159. PubMed ID: 26758667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyphenol-beta-casein complexes at the air/water interface and in solution: effects of polyphenol structure.
    Aguié-Béghin V; Sausse P; Meudec E; Cheynier V; Douillard R
    J Agric Food Chem; 2008 Oct; 56(20):9600-11. PubMed ID: 18826319
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.