BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 2656671)

  • 1. Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis.
    Fang H; Lin RJ; Gennis RB
    J Biol Chem; 1989 May; 264(14):8026-32. PubMed ID: 2656671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site?
    Vos MH; Borisov VB; Liebl U; Martin JL; Konstantinov AA
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1554-9. PubMed ID: 10660685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of glutamate-286 mutations in the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides and the cytochrome bo(3) ubiquinol oxidase from Escherichia coli.
    Egawa T; Ganesan K; Lin MT; Yu MA; Hosler JP; Yeh SR; Rousseau DL; Gennis RB
    Biochim Biophys Acta; 2011 Oct; 1807(10):1342-8. PubMed ID: 21684251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site.
    Belevich I; Borisov VB; Zhang J; Yang K; Konstantinov AA; Gennis RB; Verkhovsky MI
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3657-62. PubMed ID: 15728392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-Bound Redox Enzyme Cytochrome
    Nastasi MR; Borisov VB; Forte E
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli.
    Siletsky SA; Zaspa AA; Poole RK; Borisov VB
    PLoS One; 2014; 9(4):e95617. PubMed ID: 24755641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cytochrome bd respiratory oxygen reductases.
    Borisov VB; Gennis RB; Hemp J; Verkhovsky MI
    Biochim Biophys Acta; 2011 Nov; 1807(11):1398-413. PubMed ID: 21756872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring by pulsed EPR the electronic structure of ubisemiquinone bound at the QH site of cytochrome bo3 from Escherichia coli with in vivo 13C-labeled methyl and methoxy substituents.
    Lin MT; Shubin AA; Samoilova RI; Narasimhulu KV; Baldansuren A; Gennis RB; Dikanov SA
    J Biol Chem; 2011 Mar; 286(12):10105-14. PubMed ID: 21247900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Biological Screening of New Lawson Derivatives as Selective Substrate-Based Inhibitors of Cytochrome bo
    Elamri I; Radloff M; Hohmann KF; Nimbarte VD; Nasiri HR; Bolte M; Safarian S; Michel H; Schwalbe H
    ChemMedChem; 2020 Jul; 15(14):1262-1271. PubMed ID: 32159929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of cytochrome bo3 in a tethered bilayer lipid membrane.
    Weiss SA; Bushby RJ; Evans SD; Jeuken LJ
    Biochim Biophys Acta; 2010 Dec; 1797(12):1917-23. PubMed ID: 20096262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-bonded networks along and bifurcation of the E-pathway in quinol:fumarate reductase.
    Herzog E; Gu W; Juhnke HD; Haas AH; Mäntele W; Simon J; Helms V; Lancaster CR
    Biophys J; 2012 Sep; 103(6):1305-14. PubMed ID: 22995503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial cytochrome c1 is a collapsed di-heme cytochrome.
    Baymann F; Lebrun E; Nitschke W
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17737-40. PubMed ID: 15591339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of the diheme cytochrome c
    Zhong F; Reik ME; Ragusa MJ; Pletneva EV
    J Inorg Biochem; 2024 Apr; 253():112496. PubMed ID: 38330683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance spectroscopy of bacterial membranes: coenzyme-Q diffusion in a finite diffusion layer.
    Jeuken LJ; Weiss SA; Henderson PJ; Evans SD; Bushby RJ
    Anal Chem; 2008 Dec; 80(23):9084-90. PubMed ID: 19551979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling coherence distinguishes structure sensitivity in protein electron transfer.
    Prytkova TR; Kurnikov IV; Beratan DN
    Science; 2007 Feb; 315(5812):622-5. PubMed ID: 17272715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Engineered Glutamate in Biosynthetic Models of Heme-Copper Oxidases Drives Complete Product Selectivity by Tuning the Hydrogen-Bonding Network.
    Petrik ID; Davydov R; Kahle M; Sandoval B; Dwaraknath S; Ädelroth P; Hoffman B; Lu Y
    Biochemistry; 2021 Feb; 60(4):346-355. PubMed ID: 33464878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing artificial respiratory chain in polymer compartments: Insights into the interplay between
    Marušič N; Otrin L; Zhao Z; Lira RB; Kyrilis FL; Hamdi F; Kastritis PL; Vidaković-Koch T; Ivanov I; Sundmacher K; Dimova R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15006-15017. PubMed ID: 32554497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data for molecular dynamics simulations of
    Ahn SH; Seitz C; Cruzeiro VWD; McCammon JA; Götz AW
    Data Brief; 2021 Oct; 38():107401. PubMed ID: 34621930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein dynamics govern the oxyferrous state lifetime of an artificial oxygen transport protein.
    Zhang L; Brown MC; Mutter AC; Greenland KN; Cooley JW; Koder RL
    Biophys J; 2023 Nov; 122(22):4440-4450. PubMed ID: 37865818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory Heme A-Containing Oxidases Originated in the Ancestors of Iron-Oxidizing Bacteria.
    Degli Esposti M; Moya-Beltrán A; Quatrini R; Hederstedt L
    Front Microbiol; 2021; 12():664216. PubMed ID: 34211444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.