These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Robust Summarization and Inference in Proteome-wide Label-free Quantification. Sticker A; Goeminne L; Martens L; Clement L Mol Cell Proteomics; 2020 Jul; 19(7):1209-1219. PubMed ID: 32321741 [TBL] [Abstract][Full Text] [Related]
3. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob. Goeminne LJE; Gevaert K; Clement L J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044 [TBL] [Abstract][Full Text] [Related]
4. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification. Tu C; Shen S; Sheng Q; Shyr Y; Qu J J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464 [TBL] [Abstract][Full Text] [Related]
5. A multi-model statistical approach for proteomic spectral count quantitation. Branson OE; Freitas MA J Proteomics; 2016 Jul; 144():23-32. PubMed ID: 27260494 [TBL] [Abstract][Full Text] [Related]
6. Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics. Chion M; Carapito C; Bertrand F PLoS Comput Biol; 2022 Aug; 18(8):e1010420. PubMed ID: 36037245 [TBL] [Abstract][Full Text] [Related]
7. Peptide-to-Protein Summarization: An Important Step for Accurate Quantification in Label-Based Proteomics. Fischer M; Muth T; Renard BY Methods Mol Biol; 2019; 1977():159-180. PubMed ID: 30980328 [TBL] [Abstract][Full Text] [Related]
8. Label-Free Quantitative Proteomics in Yeast. Léger T; Garcia C; Videlier M; Camadro JM Methods Mol Biol; 2016; 1361():289-307. PubMed ID: 26483028 [TBL] [Abstract][Full Text] [Related]
9. Peak intensity prediction in MALDI-TOF mass spectrometry: a machine learning study to support quantitative proteomics. Timm W; Scherbart A; Böcker S; Kohlbacher O; Nattkemper TW BMC Bioinformatics; 2008 Oct; 9():443. PubMed ID: 18937839 [TBL] [Abstract][Full Text] [Related]
10. Summarization vs Peptide-Based Models in Label-Free Quantitative Proteomics: Performance, Pitfalls, and Data Analysis Guidelines. Goeminne LJ; Argentini A; Martens L; Clement L J Proteome Res; 2015 Jun; 14(6):2457-65. PubMed ID: 25827922 [TBL] [Abstract][Full Text] [Related]
11. Missing Value Monitoring Enhances the Robustness in Proteomics Quantitation. Matafora V; Corno A; Ciliberto A; Bachi A J Proteome Res; 2017 Apr; 16(4):1719-1727. PubMed ID: 28282139 [TBL] [Abstract][Full Text] [Related]
13. Identification of differentially expressed peptides in high-throughput proteomics data. van Ooijen MP; Jong VL; Eijkemans MJC; Heck AJR; Andeweg AC; Binai NA; van den Ham HJ Brief Bioinform; 2018 Sep; 19(5):971-981. PubMed ID: 28369175 [TBL] [Abstract][Full Text] [Related]
14. Label-Based and Label-Free Strategies for Protein Quantitation. Anand S; Samuel M; Ang CS; Keerthikumar S; Mathivanan S Methods Mol Biol; 2017; 1549():31-43. PubMed ID: 27975282 [TBL] [Abstract][Full Text] [Related]
15. Baldur: Bayesian Hierarchical Modeling for Label-Free Proteomics with Gamma Regressing Mean-Variance Trends. Berg P; Popescu G Mol Cell Proteomics; 2023 Dec; 22(12):100658. PubMed ID: 37806340 [TBL] [Abstract][Full Text] [Related]
16. Triqler for Protein Summarization of Data from Data-Independent Acquisition Mass Spectrometry. Truong P; The M; Käll L J Proteome Res; 2023 Apr; 22(4):1359-1366. PubMed ID: 36988210 [TBL] [Abstract][Full Text] [Related]