These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26566809)

  • 1. Temperature effects on seaweed-sustaining top-down control vary with season.
    Werner FJ; Graiff A; Matthiessen B
    Oecologia; 2016 Mar; 180(3):889-901. PubMed ID: 26566809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae).
    Raddatz S; Guy-Haim T; Rilov G; Wahl M
    J Phycol; 2017 Feb; 53(1):44-58. PubMed ID: 27711971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem.
    Ullah H; Fordham DA; Goldenberg SU; Nagelkerken I
    Ecol Appl; 2024 Jun; 34(4):e2977. PubMed ID: 38706047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.
    Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F
    Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocean acidification decreases grazing pressure but alters morphological structure in a dominant coastal seaweed.
    Kinnby A; White JCB; Toth GB; Pavia H
    PLoS One; 2021; 16(1):e0245017. PubMed ID: 33508019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.
    Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F
    Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-occurrence of native and invasive macroalgae might be facilitated under global warming.
    Bommarito C; Noè S; Díaz-Morales DM; Lukić I; Hiebenthal C; Rilov G; Guy-Haim T; Wahl M
    Sci Total Environ; 2024 Feb; 912():169087. PubMed ID: 38056641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change negates positive CO
    Ullah H; Fordham DA; Nagelkerken I
    Sci Total Environ; 2021 Dec; 801():149624. PubMed ID: 34419906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects.
    Taucher J; Haunost M; Boxhammer T; Bach LT; Algueró-Muñiz M; Riebesell U
    PLoS One; 2017; 12(2):e0169737. PubMed ID: 28178268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buffering and Amplifying Interactions among OAW (Ocean Acidification & Warming) and Nutrient Enrichment on Early Life-Stage Fucus vesiculosus L. (Phaeophyceae) and Their Carry Over Effects to Hypoxia Impact.
    Al-Janabi B; Kruse I; Graiff A; Winde V; Lenz M; Wahl M
    PLoS One; 2016; 11(4):e0152948. PubMed ID: 27043710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent responses in growth and nutritional quality of coastal macroalgae to the combination of increased pCO
    Ober GT; Thornber CS
    Mar Environ Res; 2017 Oct; 131():69-79. PubMed ID: 28943069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring.
    Werner FJ; Matthiessen B
    Mar Biol; 2017; 164(4):67. PubMed ID: 28316345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consumers mediate the effects of experimental ocean acidification and warming on primary producers.
    Alsterberg C; Eklöf JS; Gamfeldt L; Havenhand JN; Sundbäck K
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8603-8. PubMed ID: 23630263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trophic Transfer of Radioactive Micronutrients in a Shallow Benthic Food Web.
    Holmerin I; Kiel Jensen L; Hevrøy T; Bradshaw C
    Environ Toxicol Chem; 2021 Jun; 40(6):1694-1705. PubMed ID: 33620102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosted food web productivity through ocean acidification collapses under warming.
    Goldenberg SU; Nagelkerken I; Ferreira CM; Ullah H; Connell SD
    Glob Chang Biol; 2017 Oct; 23(10):4177-4184. PubMed ID: 28447365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots.
    Popova E; Yool A; Byfield V; Cochrane K; Coward AC; Salim SS; Gasalla MA; Henson SA; Hobday AJ; Pecl GT; Sauer WH; Roberts MJ
    Glob Chang Biol; 2016 Jun; 22(6):2038-53. PubMed ID: 26855008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidative Properties of Baltic Sea Keystone Macroalgae (
    Graiff A; Karsten U
    Biology (Basel); 2021 Dec; 10(12):. PubMed ID: 34943245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of foundation macrophytes to near-natural simulated marine heatwaves.
    Saha M; Barboza FR; Somerfield PJ; Al-Janabi B; Beck M; Brakel J; Ito M; Pansch C; Nascimento-Schulze JC; Jakobsson Thor S; Weinberger F; Sawall Y
    Glob Chang Biol; 2020 Feb; 26(2):417-430. PubMed ID: 31670451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tolerance to climate change of the clonally reproducing endemic Baltic seaweed, Fucus radicans: is phenotypic plasticity enough?
    Rugiu L; Manninen I; Rothäusler E; Jormalainen V
    J Phycol; 2018 Dec; 54(6):888-898. PubMed ID: 30315649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warming, but Not Acidification, Restructures Epibacterial Communities of the Baltic Macroalga
    Mensch B; Neulinger SC; Künzel S; Wahl M; Schmitz RA
    Front Microbiol; 2020; 11():1471. PubMed ID: 32676070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.