BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 26566820)

  • 1. Next generation breeding.
    Barabaschi D; Tondelli A; Desiderio F; Volante A; Vaccino P; Valè G; Cattivelli L
    Plant Sci; 2016 Jan; 242():3-13. PubMed ID: 26566820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.
    Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR
    Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational genomics for plant breeding with the genome sequence explosion.
    Kang YJ; Lee T; Lee J; Shim S; Jeong H; Satyawan D; Kim MY; Lee SH
    Plant Biotechnol J; 2016 Apr; 14(4):1057-69. PubMed ID: 26269219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding and utilizing crop genome diversity via high-resolution genotyping.
    Voss-Fels K; Snowdon RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1086-94. PubMed ID: 27003869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics.
    Fu D; Mason AS; Xiao M; Yan H
    Plant Sci; 2016 Jan; 242():37-46. PubMed ID: 26566823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects of next generation sequencing in lentil breeding.
    Kumar J; Sen Gupta D
    Mol Biol Rep; 2020 Nov; 47(11):9043-9053. PubMed ID: 33037962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research.
    Pawełkowicz M; Zieliński K; Zielińska D; Pląder W; Yagi K; Wojcieszek M; Siedlecka E; Bartoszewski G; Skarzyńska A; Przybecki Z
    Plant Sci; 2016 Jan; 242():77-88. PubMed ID: 26566826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of genotyping by sequencing technology to a variety of crop breeding programs.
    Kim C; Guo H; Kong W; Chandnani R; Shuang LS; Paterson AH
    Plant Sci; 2016 Jan; 242():14-22. PubMed ID: 26566821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in molecular marker technologies and their applications in diversity studies.
    Ramesh P; Mallikarjuna G; Sameena S; Kumar A; Gurulakshmi K; Reddy BV; Reddy PCO; Sekhar AC
    J Biosci; 2020; 45():. PubMed ID: 33097680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine mapping and gene cloning in the post-NGS era: advances and prospects.
    Jaganathan D; Bohra A; Thudi M; Varshney RK
    Theor Appl Genet; 2020 May; 133(5):1791-1810. PubMed ID: 32040676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.
    Bohra A; Jha UC; Kishor PB; Pandey S; Singh NP
    Biotechnol Adv; 2014 Dec; 32(8):1410-28. PubMed ID: 25196916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes.
    Jha UC; Sharma KD; Nayyar H; Parida SK; Siddique KHM
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-based breeding approaches in major vegetable crops.
    Hao N; Han D; Huang K; Du Y; Yang J; Zhang J; Wen C; Wu T
    Theor Appl Genet; 2020 May; 133(5):1739-1752. PubMed ID: 31728564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative trait loci from identification to exploitation for crop improvement.
    Kumar J; Gupta DS; Gupta S; Dubey S; Gupta P; Kumar S
    Plant Cell Rep; 2017 Aug; 36(8):1187-1213. PubMed ID: 28352970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction, characteristics and high throughput molecular screening methodologies in some special breeding populations: a horticultural perspective.
    Can H; Kal U; Ozyigit II; Paksoy M; Turkmen O
    J Genet; 2019 Sep; 98():. PubMed ID: 31544799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation.
    Soyk S; Benoit M; Lippman ZB
    Annu Rev Genet; 2020 Nov; 54():287-307. PubMed ID: 32870731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut.
    Varshney RK
    Plant Sci; 2016 Jan; 242():98-107. PubMed ID: 26566828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can genomics deliver climate-change ready crops?
    Varshney RK; Singh VK; Kumar A; Powell W; Sorrells ME
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):205-211. PubMed ID: 29685733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput phenotyping for crop improvement in the genomics era.
    Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA
    Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequencing crop genomes: approaches and applications.
    Jackson SA; Iwata A; Lee SH; Schmutz J; Shoemaker R
    New Phytol; 2011 Sep; 191(4):915-925. PubMed ID: 21707621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.