BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26567091)

  • 1. Implementation and use of 3D pairwise geodesic distance fields for seeding abdominal aortic vessels.
    Selver MA; Kavur AE
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):803-16. PubMed ID: 26567091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic thrombus segmentation from pre- and post-operative CTA.
    Lalys F; Yan V; Kaladji A; Lucas A; Esneault S
    Int J Comput Assist Radiol Surg; 2017 Sep; 12(9):1501-1510. PubMed ID: 28455765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D segmentation of exterior wall surface of abdominal aortic aneurysm from CT images using variable neighborhood search.
    Siriapisith T; Kusakunniran W; Haddawy P
    Comput Biol Med; 2019 Apr; 107():73-85. PubMed ID: 30782525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three dimensional active contours for the reconstruction of abdominal aortic aneurysms.
    Ayyalasomayajula A; Polk A; Basudhar A; Missoum S; Nissim L; Vande Geest JP
    Ann Biomed Eng; 2010 Jan; 38(1):164-76. PubMed ID: 19902358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions.
    Auer M; Gasser TC
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1022-8. PubMed ID: 20335091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geodesic Distance Algorithm for Extracting the Ascending Aorta from 3D CT Images.
    Jang Y; Jung HY; Hong Y; Cho I; Shim H; Chang HJ
    Comput Math Methods Med; 2016; 2016():4561979. PubMed ID: 26904151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of altered endograft path during endovascular abdominal aortic aneurysm repair with the Gore Excluder.
    Whittaker DR; Dwyer J; Fillinger MF
    J Vasc Surg; 2005 Apr; 41(4):575-83. PubMed ID: 15874919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization and segmentation of aortic endografts using marker detection.
    de Bruijne M; Niessen WJ; Maintz JB; Viergever MA
    IEEE Trans Med Imaging; 2003 Apr; 22(4):473-82. PubMed ID: 12774893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-automatic 3D segmentation of carotid lumen in contrast-enhanced computed tomography angiography images.
    Hemmati H; Kamli-Asl A; Talebpour A; Shirani S
    Phys Med; 2015 Dec; 31(8):1098-1104. PubMed ID: 26429385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of lumen and outer wall of abdominal aortic aneurysms from 3D black-blood MRI with a registration based geodesic active contour model.
    Wang Y; Seguro F; Kao E; Zhang Y; Faraji F; Zhu C; Haraldsson H; Hope M; Saloner D; Liu J
    Med Image Anal; 2017 Aug; 40():1-10. PubMed ID: 28549310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional versus three-dimensional CT angiography in analysis of anatomical suitability for stentgraft repair of abdominal aortic aneurysms.
    Pitoulias GA; Donas KP; Schulte S; Aslanidou EA; Papadimitriou DK
    Acta Radiol; 2011 Apr; 52(3):317-23. PubMed ID: 21498369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Management of Abdominal Aortic Aneurysms.
    Schanzer A; Oderich GS
    N Engl J Med; 2021 Oct; 385(18):1690-1698. PubMed ID: 34706173
    [No Abstract]   [Full Text] [Related]  

  • 13. Quantitative analysis of vascular images, in particular of abdominal aorta aneurysms from 3D CTA data sets.
    Schaap JA; de Koning PJ; Janssen JP; van der Geest RJ; Reiber JH
    Stud Health Technol Inform; 2004; 103():252-8. PubMed ID: 15747928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional ultrasonography measurements after endovascular aneurysm repair.
    Causey MW; Jayaraj A; Leotta DF; Paun M; Beach KW; Kohler TR; Zierler ER; Starnes BW
    Ann Vasc Surg; 2013 Feb; 27(2):146-53. PubMed ID: 22749436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computed tomography angiography-fluoroscopy image fusion allows visceral vessel cannulation without angiography during fenestrated endovascular aneurysm repair.
    Schwein A; Chinnadurai P; Behler G; Lumsden AB; Bismuth J; Bechara CF
    J Vasc Surg; 2018 Jul; 68(1):2-11. PubMed ID: 29395427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks.
    Fantazzini A; Esposito M; Finotello A; Auricchio F; Pane B; Basso C; Spinella G; Conti M
    Cardiovasc Eng Technol; 2020 Oct; 11(5):576-586. PubMed ID: 32783134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computed Tomography Postprocessing for Abdominal Aortic Aneurysm Lumen Recognition in Unenhanced Examinations.
    Cieri E; Simonte G; Costarelli D; Fiorucci B; Isernia G; Seracini M; Vinti G
    Ann Vasc Surg; 2019 Oct; 60():407-414. PubMed ID: 31200051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation.
    Zuluaga MA; Orkisz M; Dong P; Pacureanu A; Gouttenoire PJ; Peyrin F
    Phys Med Biol; 2014 May; 59(9):2155-71. PubMed ID: 24710691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An abdominal aortic aneurysm segmentation method: level set with region and statistical information.
    Zhuge F; Rubin GD; Sun S; Napel S
    Med Phys; 2006 May; 33(5):1440-53. PubMed ID: 16752579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.