BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26567109)

  • 1. Synaptically Localized Mitogen-Activated Protein Kinases: Local Substrates and Regulation.
    Mao LM; Wang JQ
    Mol Neurobiol; 2016 Nov; 53(9):6309-6315. PubMed ID: 26567109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions and phosphorylation of postsynaptic density 93 (PSD-93) by extracellular signal-regulated kinase (ERK).
    Guo ML; Xue B; Jin DZ; Mao LM; Wang JQ
    Brain Res; 2012 Jul; 1465():18-25. PubMed ID: 22618309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody.
    Edbauer D; Cheng D; Batterton MN; Wang CF; Duong DM; Yaffe MB; Peng J; Sheng M
    Mol Cell Proteomics; 2009 Apr; 8(4):681-95. PubMed ID: 19054758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of synaptic MAPK/ERK phosphorylation in the rat striatum and medial prefrontal cortex by dopamine and muscarinic acetylcholine receptors.
    Xue B; Mao LM; Jin DZ; Wang JQ
    J Neurosci Res; 2015 Oct; 93(10):1592-9. PubMed ID: 26153447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms coordinating functional and morphological plasticity at the synapse: role of GluA2/N-cadherin interaction-mediated actin signaling in mGluR-dependent LTD.
    Asrar S; Jia Z
    Cell Signal; 2013 Feb; 25(2):397-402. PubMed ID: 23153583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Group I Metabotropic Glutamate Receptors by MAPK/ERK in Neurons.
    Mao LM; Wang JQ
    J Nat Sci; 2016; 2(12):. PubMed ID: 28008418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons.
    Rumbaugh G; Adams JP; Kim JH; Huganir RL
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4344-51. PubMed ID: 16537406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local substrates of non-receptor tyrosine kinases at synaptic sites in neurons.
    Mao LM; Geosling R; Penman B; Wang JQ
    Sheng Li Xue Bao; 2017 Oct; 69(5):657-665. PubMed ID: 29063113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic ERK2 Phosphorylates and Regulates Metabotropic Glutamate Receptor 1 In Vitro and in Neurons.
    Yang JH; Mao LM; Choe ES; Wang JQ
    Mol Neurobiol; 2017 Nov; 54(9):7156-7170. PubMed ID: 27796752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of up-stream and downstream components of a mitogen-activated protein kinase pathway in the PSD of the rat forebrain.
    Suzuki T; Mitake S; Murata S
    Brain Res; 1999 Sep; 840(1-2):36-44. PubMed ID: 10517950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of mitogen-activated protein kinases by glutamate receptors.
    Wang JQ; Fibuch EE; Mao L
    J Neurochem; 2007 Jan; 100(1):1-11. PubMed ID: 17018022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When expressed in yeast, mammalian mitogen-activated protein kinases lose proper regulation and become spontaneously phosphorylated.
    Levin-Salomon V; Maayan I; Avrahami-Moyal L; Marbach I; Livnah O; Engelberg D
    Biochem J; 2009 Jan; 417(1):331-40. PubMed ID: 18778243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance.
    Shi Y; Gaestel M
    Biol Chem; 2002 Oct; 383(10):1519-36. PubMed ID: 12452429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases.
    Johnson GL; Lapadat R
    Science; 2002 Dec; 298(5600):1911-2. PubMed ID: 12471242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arachidonic acid directly activates members of the mitogen-activated protein kinase superfamily in rabbit proximal tubule cells.
    Alexander LD; Cui XL; Falck JR; Douglas JG
    Kidney Int; 2001 Jun; 59(6):2039-53. PubMed ID: 11380805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartment-specific regulation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) by ERK-dependent and non-ERK-dependent inductions of MAPK phosphatase (MKP)-3 and MKP-1 in differentiating P19 cells.
    Reffas S; Schlegel W
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):701-8. PubMed ID: 11104676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson's disease and Dementia with Lewy bodies.
    Ferrer I; Blanco R; Carmona M; Puig B; Barrachina M; Gómez C; Ambrosio S
    J Neural Transm (Vienna); 2001; 108(12):1383-96. PubMed ID: 11810403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions.
    Roux PP; Blenis J
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):320-44. PubMed ID: 15187187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of mitogen-activated protein kinases in human renal dysplasia.
    Omori S; Fukuzawa R; Hida M; Awazu M
    Kidney Int; 2002 Mar; 61(3):899-906. PubMed ID: 11849444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia.
    Ferrer I; Friguls B; Dalfó E; Planas AM
    Acta Neuropathol; 2003 May; 105(5):425-37. PubMed ID: 12677442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.