BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26567540)

  • 1. Identification of putative adhesins of Actinobacillus suis and their homologues in other members of the family Pasteurellaceae.
    Bujold AR; MacInnes JI
    BMC Res Notes; 2015 Nov; 8():675. PubMed ID: 26567540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of putative adhesin genes of Actinobacillus suis grown in in vivo-like conditions.
    Bujold AR; Labrie J; Jacques M; MacInnes JI
    Vet Microbiol; 2016 Nov; 195():60-69. PubMed ID: 27771071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attachment of Actinobacillus suis H91-0380 and Its Isogenic Adhesin Mutants to Extracellular Matrix Components of the Tonsils of the Soft Palate of Swine.
    Bujold AR; MacInnes JI
    Infect Immun; 2016 Oct; 84(10):2944-52. PubMed ID: 27481253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of colonization-deficient mutants of Actinobacillus suis.
    Ojha S; Lacouture S; Gottschalk M; MacInnes JI
    Vet Microbiol; 2010 Jan; 140(1-2):122-30. PubMed ID: 19664889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete genome sequence of Actinobacillus suis H91-0380, a virulent serotype O2 strain.
    MacInnes JI; Mackinnon J; Bujold AR; Ziebell K; Kropinski AM; Nash JH
    J Bacteriol; 2012 Dec; 194(23):6686-7. PubMed ID: 23144422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative functional genomic analysis of Pasteurellaceae adhesins using phage display.
    Mullen LM; Nair SP; Ward JM; Rycroft AN; Williams RJ; Henderson B
    Vet Microbiol; 2007 May; 122(1-2):123-34. PubMed ID: 17258409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apx toxins in Pasteurellaceae species from animals.
    Schaller A; Kuhnert P; de la Puente-Redondo VA; Nicolet J; Frey J
    Vet Microbiol; 2000 Jun; 74(4):365-76. PubMed ID: 10831858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesin-receptor interactions in Pasteurellaceae.
    Jacques M; Paradis SE
    FEMS Microbiol Rev; 1998 Apr; 22(1):45-59. PubMed ID: 9640646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Actinobacillus suis genes essential for the colonization of the upper respiratory tract of swine.
    Ojha S; Sirois M; Macinnes JI
    Infect Immun; 2005 Oct; 73(10):7032-9. PubMed ID: 16177387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genome sequence of Mannheimia haemolytica A1: insights into virulence, natural competence, and Pasteurellaceae phylogeny.
    Gioia J; Qin X; Jiang H; Clinkenbeard K; Lo R; Liu Y; Fox GE; Yerrapragada S; McLeod MP; McNeill TZ; Hemphill L; Sodergren E; Wang Q; Muzny DM; Homsi FJ; Weinstock GM; Highlander SK
    J Bacteriol; 2006 Oct; 188(20):7257-66. PubMed ID: 17015664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesive Functions or Pseudogenization of Type Va Autotransporters in
    Bialer MG; Ferrero MC; Delpino MV; Ruiz-Ranwez V; Posadas DM; Baldi PC; Zorreguieta A
    Front Cell Infect Microbiol; 2021; 11():607610. PubMed ID: 33987105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages.
    Qin W; Wang L; Zhai R; Ma Q; Liu J; Bao C; Zhang H; Sun C; Feng X; Gu J; Du C; Han W; Langford PR; Lei L
    Antonie Van Leeuwenhoek; 2016 Jan; 109(1):51-70. PubMed ID: 26494209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron acquisition by Actinobacillus suis: identification and characterization of a single-component haemoglobin receptor and encoding gene.
    Bahrami F; Niven DF
    Microb Pathog; 2005; 39(1-2):45-51. PubMed ID: 15899574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of putative invasion determinants of Actinobacillus species using comparative genomics.
    Bujold AR; Shure AE; Liu R; Kropinski AM; MacInnes JI
    Genomics; 2019 Jan; 111(1):59-66. PubMed ID: 29317305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae.
    Frey J
    Vet Microbiol; 2011 Nov; 153(1-2):51-8. PubMed ID: 21645978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A BOX-SCAR fragment for the identification of Actinobacillus pleuropneumoniae.
    Rossi CC; Pereira MF; Langford PR; Bazzolli DM
    FEMS Microbiol Lett; 2014 Mar; 352(1):32-7. PubMed ID: 24372642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular signatures (conserved indels) in protein sequences that are specific for the order Pasteurellales and distinguish two of its main clades.
    Naushad HS; Gupta RS
    Antonie Van Leeuwenhoek; 2012 Jan; 101(1):105-24. PubMed ID: 21830122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental model of Actinobacillus suis infection in mice.
    Ojha S; Hayes MA; Turner PV; MacInnes JI
    Comp Med; 2007 Aug; 57(4):340-8. PubMed ID: 17803047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Actinobacillus pleuropneumoniae and related organisms by DNA-DNA hybridization and restriction endonuclease fingerprinting.
    Borr JD; Ryan DA; MacInnes JI
    Int J Syst Bacteriol; 1991 Jan; 41(1):121-9. PubMed ID: 1847295
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Wang Y; Gong S; Dong X; Li J; Grenier D; Yi L
    Front Microbiol; 2020; 11():507. PubMed ID: 32373078
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.