BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26567548)

  • 1. Metallic CoS₂ nanowire electrodes for high cycling performance supercapacitors.
    Ren R; Faber MS; Dziedzic R; Wen Z; Jin S; Mao S; Chen J
    Nanotechnology; 2015 Dec; 26(49):494001. PubMed ID: 26567548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors.
    Javed MS; Dai S; Wang M; Xi Y; Lang Q; Guo D; Hu C
    Nanoscale; 2015 Aug; 7(32):13610-8. PubMed ID: 26206591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance electrocatalysis using metallic cobalt pyrite (CoS₂) micro- and nanostructures.
    Faber MS; Dziedzic R; Lukowski MA; Kaiser NS; Ding Q; Jin S
    J Am Chem Soc; 2014 Jul; 136(28):10053-61. PubMed ID: 24901378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields.
    Zhang X; Zhao Y; Xu C
    Nanoscale; 2014 Apr; 6(7):3638-46. PubMed ID: 24562602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.
    Chen W; Xia C; Alshareef HN
    ACS Nano; 2014 Sep; 8(9):9531-41. PubMed ID: 25133989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Crystalline, Metallic TiC Nanowires for Highly Robust and Wide-Temperature Electrochemical Energy Storage.
    Xia X; Zhan J; Zhong Y; Wang X; Tu J; Fan HJ
    Small; 2017 Feb; 13(5):. PubMed ID: 27805776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities.
    Kim JS; Shin SS; Han HS; Oh LS; Kim DH; Kim JH; Hong KS; Kim JY
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):268-74. PubMed ID: 24397749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells.
    Faber MS; Park K; Cabán-Acevedo M; Santra PK; Jin S
    J Phys Chem Lett; 2013 Jun; 4(11):1843-9. PubMed ID: 26283119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinel manganese-nickel-cobalt ternary oxide nanowire array for high-performance electrochemical capacitor applications.
    Li L; Zhang Y; Shi F; Zhang Y; Zhang J; Gu C; Wang X; Tu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18040-7. PubMed ID: 25247606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device.
    Wang X; Sumboja A; Lin M; Yan J; Lee PS
    Nanoscale; 2012 Nov; 4(22):7266-72. PubMed ID: 23076678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional Mn
    Sambath Kumar K; Cherusseri J; Thomas J
    ACS Omega; 2019 Feb; 4(2):4472-4480. PubMed ID: 31459642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor.
    Yu J; Wu J; Wang H; Zhou A; Huang C; Bai H; Li L
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4724-9. PubMed ID: 26830192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes.
    Liu XY; Gao YQ; Yang GW
    Nanoscale; 2016 Feb; 8(7):4227-35. PubMed ID: 26838964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.
    He X; Yoo JE; Lee MH; Bae J
    Nanotechnology; 2017 Jun; 28(24):245402. PubMed ID: 28383286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co₃O₄@CoS Core-Shell Nanosheets on Carbon Cloth for High Performance Supercapacitor Electrodes.
    Ning J; Zhang T; He Y; Jia C; Saha P; Cheng Q
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28772968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect transformation of coordination-polymer particles into magnetic carbon-coated MN3O4 (MN3O4@C) nanowires for supercapacitor electrodes with good cycling performance.
    Wang K; Ma X; Zhang Z; Zheng M; Geng Z; Wang Z
    Chemistry; 2013 May; 19(22):7084-9. PubMed ID: 23576400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-Morphology CoS
    Pan Y; Cheng X; Gong L; Shi L; Zhou T; Deng Y; Zhang H
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31441-31451. PubMed ID: 30153409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of multi-dimensional nanostructured Co(OH)F/CoS
    Liu X; Sun L; Liu Y; Yang Q; Yan F; Shi W
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):143-154. PubMed ID: 36371823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-Situ Synthesis of Heterostructured Carbon-Coated Co/MnO Nanowire Arrays for High-Performance Anodes in Asymmetric Supercapacitors.
    Chen G; Zhang X; Ma Y; Song H; Pi C; Zheng Y; Gao B; Fu J; Chu PK
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32679654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo(2)O(4) nanowires for high-performance supercapacitor.
    Xiong W; Gao Y; Wu X; Hu X; Lan D; Chen Y; Pu X; Zeng Y; Su J; Zhu Z
    ACS Appl Mater Interfaces; 2014; 6(21):19416-23. PubMed ID: 25333691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.