BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26567719)

  • 1. Spontaneous membrane-translocating peptides: influence of peptide self-aggregation and cargo polarity.
    Macchi S; Signore G; Boccardi C; Di Rienzo C; Beltram F; Cardarelli F
    Sci Rep; 2015 Nov; 5():16914. PubMed ID: 26567719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening.
    Marks JR; Placone J; Hristova K; Wimley WC
    J Am Chem Soc; 2011 Jun; 133(23):8995-9004. PubMed ID: 21545169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides.
    He J; Kauffman WB; Fuselier T; Naveen SK; Voss TG; Hristova K; Wimley WC
    J Biol Chem; 2013 Oct; 288(41):29974-86. PubMed ID: 23983125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.
    Vasconcelos L; Lehto T; Madani F; Radoi V; Hällbrink M; Vukojević V; Langel Ü
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):491-504. PubMed ID: 28962904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous Membrane Translocating Peptides: The Role of Leucine-Arginine Consensus Motifs.
    Fuselier T; Wimley WC
    Biophys J; 2017 Aug; 113(4):835-846. PubMed ID: 28834720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct translocation of cell-penetrating peptides in liposomes: a combined mass spectrometry quantification and fluorescence detection study.
    Walrant A; Matheron L; Cribier S; Chaignepain S; Jobin ML; Sagan S; Alves ID
    Anal Biochem; 2013 Jul; 438(1):1-10. PubMed ID: 23524021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Penetrating Peptides Transport Noncovalently Linked Thermally Activated Delayed Fluorescence Nanoparticles for Time-Resolved Luminescence Imaging.
    Zhu Z; Tian D; Gao P; Wang K; Li Y; Shu X; Zhu J; Zhao Q
    J Am Chem Soc; 2018 Dec; 140(50):17484-17491. PubMed ID: 30525541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles.
    Rydström A; Deshayes S; Konate K; Crombez L; Padari K; Boukhaddaoui H; Aldrian G; Pooga M; Divita G
    PLoS One; 2011; 6(10):e25924. PubMed ID: 21998722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-penetrating peptides: design, synthesis, and applications.
    Copolovici DM; Langel K; Eriste E; Langel Ü
    ACS Nano; 2014 Mar; 8(3):1972-94. PubMed ID: 24559246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides.
    Rydberg HA; Matson M; Amand HL; Esbjörner EK; Nordén B
    Biochemistry; 2012 Jul; 51(27):5531-9. PubMed ID: 22712882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second generation, arginine-rich (R-X'-R)(4)-type cell-penetrating α-ω-α-peptides with constrained, chiral ω-amino acids (X') for enhanced cargo delivery into cells.
    Patil KM; Naik RJ; Vij M; Yadav AK; Kumar VA; Ganguli M; Fernandes M
    Bioorg Med Chem Lett; 2014 Sep; 24(17):4198-202. PubMed ID: 25096299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores.
    Islam MZ; Ariyama H; Alam JM; Yamazaki M
    Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium and membrane repair.
    Palm-Apergi C; Hällbrink M
    Methods Mol Biol; 2011; 683():157-64. PubMed ID: 21053128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curvature engineering: positive membrane curvature induced by epsin N-terminal peptide boosts internalization of octaarginine.
    Pujals S; Miyamae H; Afonin S; Murayama T; Hirose H; Nakase I; Taniuchi K; Umeda M; Sakamoto K; Ulrich AS; Futaki S
    ACS Chem Biol; 2013 Sep; 8(9):1894-9. PubMed ID: 23834464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane Translocation and Organelle-Selective Delivery Steered by Polymeric Zwitterionic Nanospheres.
    Morimoto N; Wakamura M; Muramatsu K; Toita S; Nakayama M; Shoji W; Suzuki M; Winnik FM
    Biomacromolecules; 2016 Apr; 17(4):1523-35. PubMed ID: 26938047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Head to tail cyclisation of cell-penetrating peptides: impact on GAG-dependent internalisation and direct translocation.
    Amoura M; Illien F; Joliot A; Guitot K; Offer J; Sagan S; Burlina F
    Chem Commun (Camb); 2019 Apr; 55(31):4566-4569. PubMed ID: 30931466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs.
    Ramaker K; Henkel M; Krause T; Röckendorf N; Frey A
    Drug Deliv; 2018 Nov; 25(1):928-937. PubMed ID: 29656676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.