BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26568095)

  • 1. Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles.
    Lin Y; Cooper C; Wang M; Adams JJ; Genzer J; Dickey MD
    Small; 2015 Dec; 11(48):6397-403. PubMed ID: 26568095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-Metal-Coated Magnetic Particles toward Writable, Nonwettable, Stretchable Circuit Boards, and Directly Assembled Liquid Metal-Elastomer Conductors.
    Kim S; Kim S; Hong K; Dickey MD; Park S
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):37110-37119. PubMed ID: 35930688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics.
    Liu S; Yuen MC; White EL; Boley JW; Deng B; Cheng GJ; Kramer-Bottiglio R
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28232-28241. PubMed ID: 30045618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacuum filling of complex microchannels with liquid metal.
    Lin Y; Gordon O; Khan MR; Vasquez N; Genzer J; Dickey MD
    Lab Chip; 2017 Sep; 17(18):3043-3050. PubMed ID: 28805880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct write printing of a self-encapsulating liquid metal-silicone composite.
    Neumann TV; Facchine EG; Leonardo B; Khan S; Dickey MD
    Soft Matter; 2020 Jul; 16(28):6608-6618. PubMed ID: 32613217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics.
    Han YL; Liu H; Ouyang C; Lu TJ; Xu F
    Sci Rep; 2015 Jul; 5():11488. PubMed ID: 26129723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Resorbable Elastomeric Circuit Boards for Implantable Medical Devices.
    Turner BL; Ramesh S; Menegatti S; Daniele M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4860-4863. PubMed ID: 36086659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and recovery of fine particles from waste circuit boards using an inflatable tapered diameter separation bed.
    Duan C; Sheng C; Wu L; Zhao Y; He J; Zhou E
    ScientificWorldJournal; 2014; 2014():843579. PubMed ID: 25379546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing resistivity of electrically conductive ceramics by insulating grain boundary phase.
    Kusunose T; Sekino T
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2759-63. PubMed ID: 24499527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of high purity precious metals from printed circuit boards.
    Park YJ; Fray DJ
    J Hazard Mater; 2009 May; 164(2-3):1152-8. PubMed ID: 18980802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steering liquid metal flow in microchannels using low voltages.
    Tang SY; Lin Y; Joshipura ID; Khoshmanesh K; Dickey MD
    Lab Chip; 2015 Oct; 15(19):3905-11. PubMed ID: 26279150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.
    Shah MB; Tipre DR; Dave SR
    Waste Manag Res; 2014 Nov; 32(11):1134-41. PubMed ID: 25278513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures.
    Chiang HL; Lin KH; Lai MH; Chen TC; Ma SY
    J Hazard Mater; 2007 Oct; 149(1):151-9. PubMed ID: 17467900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Merging of metal nanoparticles driven by selective wettability of silver nanostructures.
    Grouchko M; Roitman P; Zhu X; Popov I; Kamyshny A; Su H; Magdassi S
    Nat Commun; 2014; 5():2994. PubMed ID: 24389630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy.
    Veit HM; Bernardes AM; Ferreira JZ; Tenório JA; de Fraga Malfatti C
    J Hazard Mater; 2006 Oct; 137(3):1704-9. PubMed ID: 16757116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of water on the interfacial behavior of gallium liquid metal alloys.
    Khan MR; Trlica C; So JH; Valeri M; Dickey MD
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22467-73. PubMed ID: 25469554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triggering the sintering of silver nanoparticles at room temperature.
    Magdassi S; Grouchko M; Berezin O; Kamyshny A
    ACS Nano; 2010 Apr; 4(4):1943-8. PubMed ID: 20373743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic control of elastomeric microfluidic circuits with shape memory actuators.
    Vyawahare S; Sitaula S; Martin S; Adalian D; Scherer A
    Lab Chip; 2008 Sep; 8(9):1530-5. PubMed ID: 18818809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria.
    Karwowska E; Andrzejewska-Morzuch D; Łebkowska M; Tabernacka A; Wojtkowska M; Telepko A; Konarzewska A
    J Hazard Mater; 2014 Jan; 264():203-10. PubMed ID: 24295772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.