These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 26568098)
21. Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications. Wang K; Sun DW; Pu H; Wei Q Talanta; 2019 Apr; 195():506-515. PubMed ID: 30625576 [TBL] [Abstract][Full Text] [Related]
22. Highly porous gold supraparticles as surface-enhanced Raman spectroscopy (SERS) substrates for sensitive detection of environmental contaminants. Kang S; Wang W; Rahman A; Nam W; Zhou W; Vikesland PJ RSC Adv; 2022 Nov; 12(51):32803-32812. PubMed ID: 36425178 [TBL] [Abstract][Full Text] [Related]
23. Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling. Shen J; Zhu Y; Yang X; Zong J; Li C Langmuir; 2013 Jan; 29(2):690-5. PubMed ID: 23206276 [TBL] [Abstract][Full Text] [Related]
24. Urchin-like LaVO₄/Au composite microspheres for surface-enhanced Raman scattering detection. Chen L; Wu M; Xiao C; Yu Y; Liu X; Qiu G J Colloid Interface Sci; 2015 Apr; 443():80-7. PubMed ID: 25540824 [TBL] [Abstract][Full Text] [Related]
25. A durian-shaped multilayer core-shell SERS substrate for flow magnetic detection of pesticide residues on foods. Lv M; Pu H; Sun DW Food Chem; 2024 Feb; 433():137389. PubMed ID: 37690135 [TBL] [Abstract][Full Text] [Related]
26. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering. Zhang K; Yao S; Li G; Hu Y Nanoscale; 2015 Feb; 7(6):2659-66. PubMed ID: 25580806 [TBL] [Abstract][Full Text] [Related]
27. High-Performance Au@Ag Nanorods Substrate for SERS Detection of Malachite Green in Aquatic Products. Zhou X; Chen S; Pan Y; Wang Y; Xu N; Xue Y; Wei X; Lu Y Biosensors (Basel); 2023 Jul; 13(8):. PubMed ID: 37622852 [TBL] [Abstract][Full Text] [Related]
28. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles. Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748 [TBL] [Abstract][Full Text] [Related]
29. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance. Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345 [TBL] [Abstract][Full Text] [Related]
30. Ratiometric surface-enhanced Raman spectroscopy detection of 5-hydroxyindole-3-acetic acid based on Au@MIL-125@MIPs substrates. Hu M; Wen C; Liu J; Li M; Leng N; Guo X; Fang Q; Kou Q; Huang R; Lin XC Talanta; 2025 Jan; 281():126880. PubMed ID: 39277938 [TBL] [Abstract][Full Text] [Related]
31. Fabrication and Application of Ag@SiO Zhang M; Meng L; Kalyinur K; Dong S; Chang X; Yu Q; Wang R; Pang B; Kong X Molecules; 2024 Mar; 29(7):. PubMed ID: 38611782 [TBL] [Abstract][Full Text] [Related]
32. Facile Fabrication of a Silver Nanoparticle Immersed, Surface-Enhanced Raman Scattering Imposed Paper Platform through Successive Ionic Layer Absorption and Reaction for On-Site Bioassays. Kim W; Kim YH; Park HK; Choi S ACS Appl Mater Interfaces; 2015 Dec; 7(50):27910-7. PubMed ID: 26619139 [TBL] [Abstract][Full Text] [Related]
33. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy. Zhang Y; Hu Y; Li G; Zhang R Mikrochim Acta; 2019 Jun; 186(7):477. PubMed ID: 31250191 [TBL] [Abstract][Full Text] [Related]
34. Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering. Chen LY; Yang KH; Chen HC; Liu YC; Chen CH; Chen QY Analyst; 2014 Apr; 139(8):1929-37. PubMed ID: 24575422 [TBL] [Abstract][Full Text] [Related]
35. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method. Wang J; Wu X; Wang C; Rong Z; Ding H; Li H; Li S; Shao N; Dong P; Xiao R; Wang S ACS Appl Mater Interfaces; 2016 Aug; 8(31):19958-67. PubMed ID: 27420923 [TBL] [Abstract][Full Text] [Related]
36. Facile Regulation of Shell Thickness of the Au@MOF Core-Shell Composites for Highly Sensitive Surface-Enhanced Raman Scattering Sensing. Li B; Liu Y; Cheng J Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146388 [TBL] [Abstract][Full Text] [Related]
37. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Uzayisenga V; Lin XD; Li LM; Anema JR; Yang ZL; Huang YF; Lin HX; Li SB; Li JF; Tian ZQ Langmuir; 2012 Jun; 28(24):9140-6. PubMed ID: 22506587 [TBL] [Abstract][Full Text] [Related]
38. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Xue JQ; Li DW; Qu LL; Long YT Anal Chim Acta; 2013 May; 777():57-62. PubMed ID: 23622965 [TBL] [Abstract][Full Text] [Related]
39. Facile In-Situ photocatalytic reduction of AuNPs on multilayer Core-Shell Fe Wu P; Sun X; Hao N; Wang L; Huang J; Tang J Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123101. PubMed ID: 37423099 [TBL] [Abstract][Full Text] [Related]
40. Electrochemical and surfaced-enhanced Raman spectroscopic investigation of CO and SCN- adsorbed on Au(core)-Pt(shell) nanoparticles supported on GC electrodes. Zhang B; Li JF; Zhong QL; Ren B; Tian ZQ; Zou SZ Langmuir; 2005 Aug; 21(16):7449-55. PubMed ID: 16042478 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]