These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26568132)

  • 21. Optogenetic Engineering of Atrial Cardiomyocytes.
    Feola I; Teplenin A; de Vries AA; Pijnappels DA
    Methods Mol Biol; 2016; 1408():319-31. PubMed ID: 26965133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute Optogenetic Modulation of Cardiac Twitch Dynamics Explored Through Modeling.
    Aboelkassem Y; Campbell SG
    J Biomech Eng; 2016 Nov; 138(11):1110051-11100511. PubMed ID: 27618140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-induced damage to the retina: role of rhodopsin chromophore revisited.
    Rózanowska M; Sarna T
    Photochem Photobiol; 2005; 81(6):1305-30. PubMed ID: 16120006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optogenetically mediated large volume suppression and synchronized excitation of human ventricular cardiomyocytes.
    Pyari G; Bansal H; Roy S
    Pflugers Arch; 2023 Dec; 475(12):1479-1503. PubMed ID: 37415050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiac applications of optogenetics.
    Ambrosi CM; Klimas A; Yu J; Entcheva E
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):294-304. PubMed ID: 25035999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology.
    Junge S; Schmieder F; Sasse P; Czarske J; Torres-Mapa ML; Heisterkamp A
    J Biophotonics; 2022 Jul; 15(7):e202100352. PubMed ID: 35397155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems.
    Ferenczi EA; Tan X; Huang CL
    Front Physiol; 2019; 10():1096. PubMed ID: 31572204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Considerations in repetitive activation of light sensitive ion channels for long-term studies: Channel rhodopsin in the Drosophila model.
    Higgins J; Hermanns C; Malloy C; Cooper RL
    Neurosci Res; 2017 Dec; 125():1-10. PubMed ID: 28728913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cardiac pacing using transmural multi-LED probes in channelrhodopsin-expressing mouse hearts.
    Zgierski-Johnston CM; Ayub S; Fernández MC; Rog-Zielinska EA; Barz F; Paul O; Kohl P; Ruther P
    Prog Biophys Mol Biol; 2020 Aug; 154():51-61. PubMed ID: 31738979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Channelrhodopsin2 current during the action potential: "optical AP clamp" and approximation.
    Entcheva E; Williams JC
    Sci Rep; 2014 Jul; 4():5838. PubMed ID: 25060859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optogenetic LED array for perturbing cardiac electrophysiology.
    Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1619-22. PubMed ID: 24110013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord.
    Zhang Y; Yue J; Ai M; Ji Z; Liu Z; Cao X; Li L
    Spine (Phila Pa 1976); 2014 Jul; 39(15):E865-9. PubMed ID: 25171072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cardiac Optogenetics and Optical Mapping - Overcoming Spectral Congestion in All-Optical Cardiac Electrophysiology.
    O'Shea C; Holmes AP; Winter J; Correia J; Ou X; Dong R; He S; Kirchhof P; Fabritz L; Rajpoot K; Pavlovic D
    Front Physiol; 2019; 10():182. PubMed ID: 30899227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IPG-based field potential measurement of cultured cardiomyocytes for optogenetic applications.
    Wang TW; Sung YL; Chu HW; Lin SF
    Biosens Bioelectron; 2021 May; 179():113060. PubMed ID: 33571936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. All-optical control of cardiac excitation: combined high-resolution optogenetic actuation and optical mapping.
    Entcheva E; Bub G
    J Physiol; 2016 May; 594(9):2503-10. PubMed ID: 26857427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anion channelrhodopsins for inhibitory cardiac optogenetics.
    Govorunova EG; Cunha SR; Sineshchekov OA; Spudich JL
    Sci Rep; 2016 Sep; 6():33530. PubMed ID: 27628215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of Engineered "Spark-Cell" Spheroids for Optical Pacing of Cardiac Tissue.
    Chua CJ; Han JL; Li W; Liu W; Entcheva E
    Front Bioeng Biotechnol; 2021; 9():658594. PubMed ID: 34222210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes.
    Beiert T; Bruegmann T; Sasse P
    Cardiovasc Res; 2014 Jun; 102(3):507-16. PubMed ID: 24576953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optogenetic Stimulation of Primary Cardiomyocytes Expressing ChR2.
    Keshmiri Neghab H; Soheilifar MH; Saboury AA; Goliaei B; Hong J; Esmaeeli Djavid G
    J Lasers Med Sci; 2021; 12():e32. PubMed ID: 34733755
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.