These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26568957)

  • 1. Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks.
    Sadrawi M; Fan SZ; Abbod MF; Jen KK; Shieh JS
    Biomed Res Int; 2015; 2015():536863. PubMed ID: 26568957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Med Biol Eng Comput; 2017 Aug; 55(8):1435-1450. PubMed ID: 27995430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time depth of anaesthesia assessment using strong analytical signal transform technique.
    Palendeng ME; Wen P; Li Y
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):723-30. PubMed ID: 25412884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.
    Jiang GJ; Fan SZ; Abbod MF; Huang HH; Lan JY; Tsai FF; Chang HC; Yang YW; Chuang FL; Chiu YF; Jen KK; Wu JF; Shieh JS
    Biomed Res Int; 2015; 2015():343478. PubMed ID: 25738152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG Signals Analysis Using Multiscale Entropy for Depth of Anesthesia Monitoring during Surgery through Artificial Neural Networks.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Comput Math Methods Med; 2015; 2015():232381. PubMed ID: 26491464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying cortical activity during general anesthesia using wavelet analysis.
    Zikov T; Bibian S; Dumont GA; Huzmezan M; Ries CR
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):617-32. PubMed ID: 16602568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG under anesthesia--feature extraction with TESPAR.
    Moca VV; Scheller B; Mureşan RC; Daunderer M; Pipa G
    Comput Methods Programs Biomed; 2009 Sep; 95(3):191-202. PubMed ID: 19371961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in auditory evoked potential index and bispectral index during induction of anesthesia with anesthetic drugs.
    Matsushita S; Oda S; Otaki K; Nakane M; Kawamae K
    J Clin Monit Comput; 2015 Oct; 29(5):621-6. PubMed ID: 25427598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia.
    Li D; Li X; Liang Z; Voss LJ; Sleigh JW
    J Neural Eng; 2010 Aug; 7(4):046010. PubMed ID: 20581428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia.
    Gu Y; Liang Z; Hagihira S
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences between state entropy and bispectral index during analysis of identical electroencephalogram signals: a comparison with two randomised anaesthetic techniques.
    Pilge S; Kreuzer M; Karatchiviev V; Kochs EF; Malcharek M; Schneider G
    Eur J Anaesthesiol; 2015 May; 32(5):354-65. PubMed ID: 25564779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition.
    Madanu R; Rahman F; Abbod MF; Fan SZ; Shieh JS
    Math Biosci Eng; 2021 Jun; 18(5):5047-5068. PubMed ID: 34517477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SQI-DOANet: electroencephalogram-based deep neural network for estimating signal quality index and depth of anaesthesia.
    Yu R; Zhou Z; Xu M; Gao M; Zhu M; Wu S; Gao X; Bin G
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 39029477
    [No Abstract]   [Full Text] [Related]  

  • 14. Automated EEG preprocessing during anaesthesia: new aspects using artificial neural networks.
    Jeleazcov C; Egner S; Bremer F; Schwilden H
    Biomed Tech (Berl); 2004 May; 49(5):125-31. PubMed ID: 15212197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation Between Bispectral Index and Electrocorticographic Features During Epilepsy Surgery.
    Ramírez MIG; Rodríguez-Arias LR; Santiago AO; Pizano AL; Zamora RL; Gregorio RV; Trenado C; Sánchez HMG; San-Juan D
    Clin EEG Neurosci; 2017 Jul; 48(4):272-279. PubMed ID: 27325591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the depth of anesthesia using entropy features and an artificial neural network.
    Shalbaf R; Behnam H; Sleigh JW; Steyn-Ross A; Voss LJ
    J Neurosci Methods; 2013 Aug; 218(1):17-24. PubMed ID: 23567809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory stimuli as a contributor to consciousness while under general anesthesia.
    Thiele RH; Knipper E; Dunn LK; Nemergut EC
    Med Hypotheses; 2013 May; 80(5):568-72. PubMed ID: 23419669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Real-Time Depth of Anesthesia Monitoring System Based on Deep Neural Network With Large EDO Tolerant EEG Analog Front-End.
    Park Y; Han SH; Byun W; Kim JH; Lee HC; Kim SJ
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):825-837. PubMed ID: 32746339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of EEG to quantify depth of anesthesia using Hidden Markov Model.
    Kim J; Hyub H; Yoon SZ; Choi HJ; Kim KM; Park SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4575-8. PubMed ID: 25571010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detrended fluctuation analysis of EEG as a measure of depth of anesthesia.
    Jospin M; Caminal P; Jensen EW; Litvan H; Vallverdú M; Struys MM; Vereecke HE; Kaplan DT
    IEEE Trans Biomed Eng; 2007 May; 54(5):840-6. PubMed ID: 17518280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.