These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 26569115)

  • 1. Diagnostic Magnetic Resonance Imaging of Atherosclerosis in Apolipoprotein E Knockout Mouse Model Using Macrophage-Targeted Gadolinium-Containing Synthetic Lipopeptide Nanoparticles.
    Shen ZT; Zheng S; Gounis MJ; Sigalov AB
    PLoS One; 2015; 10(11):e0143453. PubMed ID: 26569115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis.
    Chen W; Vucic E; Leupold E; Mulder WJ; Cormode DP; Briley-Saebo KC; Barazza A; Fisher EA; Dathe M; Fayad ZA
    Contrast Media Mol Imaging; 2008; 3(6):233-42. PubMed ID: 19072768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature-inspired nanoformulations for contrast-enhanced in vivo MR imaging of macrophages.
    Sigalov AB
    Contrast Media Mol Imaging; 2014; 9(5):372-82. PubMed ID: 24729189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression.
    Chen W; Cormode DP; Vengrenyuk Y; Herranz B; Feig JE; Klink A; Mulder WJ; Fisher EA; Fayad ZA
    JACC Cardiovasc Imaging; 2013 Mar; 6(3):373-84. PubMed ID: 23433925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of synthetic high density lipoprotein (HDL) contrast agents for MR imaging of atherosclerosis.
    Cormode DP; Chandrasekar R; Delshad A; Briley-Saebo KC; Calcagno C; Barazza A; Mulder WJ; Fisher EA; Fayad ZA
    Bioconjug Chem; 2009 May; 20(5):937-43. PubMed ID: 19378935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models.
    Pérez-Medina C; Binderup T; Lobatto ME; Tang J; Calcagno C; Giesen L; Wessel CH; Witjes J; Ishino S; Baxter S; Zhao Y; Ramachandran S; Eldib M; Sánchez-Gaytán BL; Robson PM; Bini J; Granada JF; Fish KM; Stroes ES; Duivenvoorden R; Tsimikas S; Lewis JS; Reiner T; Fuster V; Kjær A; Fisher EA; Fayad ZA; Mulder WJ
    JACC Cardiovasc Imaging; 2016 Aug; 9(8):950-61. PubMed ID: 27236528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and cellular targets of the MRI contrast agent P947 for atherosclerosis imaging.
    Ouimet T; Lancelot E; Hyafil F; Rienzo M; Deux F; Lemaître M; Duquesnoy S; Garot J; Roques BP; Michel JB; Corot C; Ballet S
    Mol Pharm; 2012 Apr; 9(4):850-61. PubMed ID: 22352457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.
    Yasuda S; Ikuta K; Uwatoku T; Oi K; Abe K; Hyodo F; Yoshimitsu K; Sugimura K; Utsumi H; Katayama Y; Shimokawa H
    J Vasc Res; 2008; 45(2):123-8. PubMed ID: 17940339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives.
    Burtea C; Ballet S; Laurent S; Rousseaux O; Dencausse A; Gonzalez W; Port M; Corot C; Vander Elst L; Muller RN
    Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):e36-48. PubMed ID: 22516067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging monocytes with iron oxide nanoparticles targeted towards the monocyte integrin MAC-1 (CD11b/CD18) does not result in improved atherosclerotic plaque detection by in vivo MRI.
    von zur Muhlen C; Fink-Petri A; Salaklang J; Paul D; Neudorfer I; Berti V; Merkle A; Peter K; Bode C; von Elverfeldt D
    Contrast Media Mol Imaging; 2010; 5(5):268-75. PubMed ID: 20973112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin-Like Growth Factor-1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E-Deficient Mice.
    Higashi Y; Sukhanov S; Shai SY; Danchuk S; Tang R; Snarski P; Li Z; Lobelle-Rich P; Wang M; Wang D; Yu H; Korthuis R; Delafontaine P
    Circulation; 2016 Jun; 133(23):2263-78. PubMed ID: 27154724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of gadolinium metallofullerenes for detecting atherosclerotic plaque lesions by cardiovascular magnetic resonance.
    Dellinger A; Olson J; Link K; Vance S; Sandros MG; Yang J; Zhou Z; Kepley CL
    J Cardiovasc Magn Reson; 2013 Jan; 15(1):7. PubMed ID: 23324435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.
    Evans RJ; Lavin B; Phinikaridou A; Chooi KY; Mohri Z; Wong E; Boyle JJ; Krams R; Botnar R; Long NJ
    Nanotheranostics; 2020; 4(4):184-194. PubMed ID: 32637296
    [No Abstract]   [Full Text] [Related]  

  • 14. Scavenger receptor-AI-targeted ultrasmall gold nanoclusters facilitate in vivo MR and ex vivo fluorescence dual-modality visualization of vulnerable atherosclerotic plaques.
    Wang J; Wu M; Chang J; Li L; Guo Q; Hao J; Peng Q; Zhang B; Zhang X; Li X
    Nanomedicine; 2019 Jul; 19():81-94. PubMed ID: 31028886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-inflammatory drug evaluation in ApoE-/- mice by ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging.
    Sigovan M; Kaye E; Lancelot E; Corot C; Provost N; Majd Z; Breisse M; Canet-Soulas E
    Invest Radiol; 2012 Sep; 47(9):546-52. PubMed ID: 22864378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes.
    Briley-Saebo KC; Shaw PX; Mulder WJ; Choi SH; Vucic E; Aguinaldo JG; Witztum JL; Fuster V; Tsimikas S; Fayad ZA
    Circulation; 2008 Jun; 117(25):3206-15. PubMed ID: 18541740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraperitoneal injection improves the uptake of nanoparticle-labeled high-density lipoprotein to atherosclerotic plaques compared with intravenous injection: a multimodal imaging study in ApoE knockout mice.
    Jung C; Kaul MG; Bruns OT; Dučić T; Freund B; Heine M; Reimer R; Meents A; Salmen SC; Weller H; Nielsen P; Adam G; Heeren J; Ittrich H
    Circ Cardiovasc Imaging; 2014 Mar; 7(2):303-11. PubMed ID: 24357264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent.
    Bhavane R; Badea C; Ghaghada KB; Clark D; Vela D; Moturu A; Annapragada A; Johnson GA; Willerson JT; Annapragada A
    Circ Cardiovasc Imaging; 2013 Mar; 6(2):285-94. PubMed ID: 23349231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo assessment of intraplaque and endothelial fibrin in ApoE(-/-) mice by molecular MRI.
    Makowski MR; Forbes SC; Blume U; Warley A; Jansen CH; Schuster A; Wiethoff AJ; Botnar RM
    Atherosclerosis; 2012 May; 222(1):43-9. PubMed ID: 22284956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI.
    Amirbekian V; Lipinski MJ; Briley-Saebo KC; Amirbekian S; Aguinaldo JG; Weinreb DB; Vucic E; Frias JC; Hyafil F; Mani V; Fisher EA; Fayad ZA
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):961-6. PubMed ID: 17215360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.