These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 26569339)

  • 1. Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication.
    Bhargavan B; Woollard SM; Kanmogne GD
    Cell Signal; 2016 Feb; 28(2):7-22. PubMed ID: 26569339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toll-Like Receptor-3 Mediates HIV-1-Induced Interleukin-6 Expression in the Human Brain Endothelium via TAK1 and JNK Pathways: Implications for Viral Neuropathogenesis.
    Bhargavan B; Kanmogne GD
    Mol Neurobiol; 2018 Jul; 55(7):5976-5992. PubMed ID: 29128906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIV-1 Tat protein induces IL-10 production in monocytes by classical and alternative NF-kappaB pathways.
    Leghmari K; Bennasser Y; Bahraoui E
    Eur J Cell Biol; 2008 Dec; 87(12):947-62. PubMed ID: 18760861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HDAC1/NFκB pathway is involved in curcumin inhibiting of Tat-mediated long terminal repeat transactivation.
    Zhang HS; Ruan Z; Sang WW
    J Cell Physiol; 2011 Dec; 226(12):3385-91. PubMed ID: 21344388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data in support of NFκB and JNK pathways involvement in TLR3-mediated HIV-1 transactivation, expression of IL-6 and transcription factors associated with HIV-1 replication.
    Bhargavan B; Woollard SM; Kanmogne GD
    Data Brief; 2016 Mar; 6():345-51. PubMed ID: 26862581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIV-1 Tat interactions with p300 and PCAF transcriptional coactivators inhibit histone acetylation and neurotrophin signaling through CREB.
    Wong K; Sharma A; Awasthi S; Matlock EF; Rogers L; Van Lint C; Skiest DJ; Burns DK; Harrod R
    J Biol Chem; 2005 Mar; 280(10):9390-9. PubMed ID: 15611041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat.
    He G; Margolis DM
    Mol Cell Biol; 2002 May; 22(9):2965-73. PubMed ID: 11940654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV-1 Tat directly binds to NFkappaB enhancer sequence: role in viral and cellular gene expression.
    Dandekar DH; Ganesh KN; Mitra D
    Nucleic Acids Res; 2004; 32(4):1270-8. PubMed ID: 14981150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication.
    McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B
    Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter.
    Lusic M; Marcello A; Cereseto A; Giacca M
    EMBO J; 2003 Dec; 22(24):6550-61. PubMed ID: 14657027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NFκB- and AP-1-mediated DNA looping regulates matrix metalloproteinase-9 transcription in TNF-α-treated human leukemia U937 cells.
    Chen YJ; Chang LS
    Biochim Biophys Acta; 2015 Oct; 1849(10):1248-59. PubMed ID: 26260845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIV-1 tat transcriptional activity is regulated by acetylation.
    Kiernan RE; Vanhulle C; Schiltz L; Adam E; Xiao H; Maudoux F; Calomme C; Burny A; Nakatani Y; Jeang KT; Benkirane M; Van Lint C
    EMBO J; 1999 Nov; 18(21):6106-18. PubMed ID: 10545121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell cycle arrest in G2 induces human immunodeficiency virus type 1 transcriptional activation through histone acetylation and recruitment of CBP, NF-kappaB, and c-Jun to the long terminal repeat promoter.
    Thierry S; Marechal V; Rosenzwajg M; Sabbah M; Redeuilh G; Nicolas JC; Gozlan J
    J Virol; 2004 Nov; 78(22):12198-206. PubMed ID: 15507606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of HIV-1 transcription.
    Tripathy MK; Abbas W; Herbein G
    Epigenomics; 2011 Aug; 3(4):487-502. PubMed ID: 22126207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIV-1 infection induces acetylation of NPM1 that facilitates Tat localization and enhances viral transactivation.
    Gadad SS; Rajan RE; Senapati P; Chatterjee S; Shandilya J; Dash PK; Ranga U; Kundu TK
    J Mol Biol; 2011 Jul; 410(5):997-1007. PubMed ID: 21763502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular RelB interacts with the transactivator Tat and enhance HIV-1 expression.
    Wang M; Yang W; Chen Y; Wang J; Tan J; Qiao W
    Retrovirology; 2018 Sep; 15(1):65. PubMed ID: 30241541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones.
    Deng L; de la Fuente C; Fu P; Wang L; Donnelly R; Wade JD; Lambert P; Li H; Lee CG; Kashanchi F
    Virology; 2000 Nov; 277(2):278-95. PubMed ID: 11080476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UTX-1 regulates Tat-induced HIV-1 transactivation via changing the methylated status of histone H3.
    Zhang HS; Du GY; Liu Y; Zhang ZG; Zhou Z; Li H; Dai KQ; Yu XY; Gou XM
    Int J Biochem Cell Biol; 2016 Nov; 80():51-56. PubMed ID: 27671333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toll-like receptor 3 signaling inhibits simian immunodeficiency virus replication in macrophages from rhesus macaques.
    Sang M; Liu JB; Dai M; Wu JG; Ho WZ
    Antiviral Res; 2014 Dec; 112():103-12. PubMed ID: 25453343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NF-kappaB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages.
    Varin A; Decrion AZ; Sabbah E; Quivy V; Sire J; Van Lint C; Roques BP; Aggarwal BB; Herbein G
    J Biol Chem; 2005 Dec; 280(52):42557-67. PubMed ID: 16243842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.