These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26569356)

  • 1. Spin-orbit-induced gap modification in buckled honeycomb XBi and XBi₃ (X  =  B, Al, Ga, and In) sheets.
    Freitas RR; Mota Fde B; Rivelino R; de Castilho CM; Kakanakova-Georgieva A; Gueorguiev GK
    J Phys Condens Matter; 2015 Dec; 27(48):485306. PubMed ID: 26569356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning band inversion symmetry of buckled III-Bi sheets by halogenation.
    Freitas RR; de Brito Mota F; Rivelino R; de Castilho CM; Kakanakova-Georgieva A; Gueorguiev GK
    Nanotechnology; 2016 Feb; 27(5):055704. PubMed ID: 26752271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi.
    Chuang FC; Yao LZ; Huang ZQ; Liu YT; Hsu CH; Das T; Lin H; Bansil A
    Nano Lett; 2014 May; 14(5):2505-8. PubMed ID: 24734779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III-V Buckled Honeycombs.
    Crisostomo CP; Yao LZ; Huang ZQ; Hsu CH; Chuang FC; Lin H; Albao MA; Bansil A
    Nano Lett; 2015 Oct; 15(10):6568-74. PubMed ID: 26390082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles investigation of electronic, mechanical and thermoelectric properties of graphene-like XBi (X = Si, Ge, Sn) monolayers.
    Bafekry A; Yagmurcukardes M; Akgenc B; Ghergherehchi M; Mortazavi B
    Phys Chem Chem Phys; 2021 Jun; 23(21):12471-12478. PubMed ID: 34037032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buckled two-dimensional Xene sheets.
    Molle A; Goldberger J; Houssa M; Xu Y; Zhang SC; Akinwande D
    Nat Mater; 2017 Feb; 16(2):163-169. PubMed ID: 28092688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum spin hall insulators in strain-modified arsenene.
    Zhang H; Ma Y; Chen Z
    Nanoscale; 2015 Dec; 7(45):19152-9. PubMed ID: 26524287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe.
    Li J; He C; Meng L; Xiao H; Tang C; Wei X; Kim J; Kioussis N; Stocks GM; Zhong J
    Sci Rep; 2015 Sep; 5():14115. PubMed ID: 26365502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological insulator states in a honeycomb lattice of s-triazines.
    Wang A; Zhang X; Zhao M
    Nanoscale; 2014 Oct; 6(19):11157-62. PubMed ID: 25119110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 2D Bismuth-Induced Honeycomb Surface Structure on GaAs(111).
    Liu Y; Benter S; Ong CS; Maciel RP; Björk L; Irish A; Eriksson O; Mikkelsen A; Timm R
    ACS Nano; 2023 Mar; 17(5):5047-5058. PubMed ID: 36821844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles prediction on bismuthylene monolayer as a promising quantum spin Hall insulator.
    Zhang RW; Zhang CW; Ji WX; Yan SS; Yao YG
    Nanoscale; 2017 Jun; 9(24):8207-8212. PubMed ID: 28580989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds.
    Padilha JE; Pontes RB; Schmidt TM; Miwa RH; Fazzio A
    Sci Rep; 2016 May; 6():26123. PubMed ID: 27212604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum spin Hall effect in silicene and two-dimensional germanium.
    Liu CC; Feng W; Yao Y
    Phys Rev Lett; 2011 Aug; 107(7):076802. PubMed ID: 21902414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.
    Hu XK; Lyu JK; Zhang CW; Wang PJ; Ji WX; Li P
    Phys Chem Chem Phys; 2018 May; 20(19):13632-13636. PubMed ID: 29737999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-functionalized TlTe buckled honeycomb from first-principles study.
    Lu Q; Wen YM; Zeng ZY; Chen XR; Chen QF
    Phys Chem Chem Phys; 2019 Mar; 21(10):5689-5694. PubMed ID: 30801076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum spin Hall effect in two-dimensional hydrogenated SnPb alloy films.
    Ren M; Yuan M; Chen X; Ji W; Li P; Li F
    Phys Chem Chem Phys; 2018 Apr; 20(14):9610-9615. PubMed ID: 29578235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nontrivial topology and topological phase transition in two-dimensional monolayer Tl.
    Zhang J; Ji WX; Zhang CW; Li P; Wang PJ
    Phys Chem Chem Phys; 2018 Oct; 20(38):24790-24795. PubMed ID: 30229754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum spin Hall insulators in functionalized arsenene (AsX, X = F, OH and CH3) monolayers with pronounced light absorption.
    Zhao J; Li Y; Ma J
    Nanoscale; 2016 May; 8(18):9657-66. PubMed ID: 27101795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-polarized Dirac cones and topological nontriviality in a metal-organic framework Ni2C24S6H12.
    Wei L; Zhang X; Zhao M
    Phys Chem Chem Phys; 2016 Mar; 18(11):8059-64. PubMed ID: 26923280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.