These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26569503)

  • 41. An invasive wetland grass primes deep soil carbon pools.
    Bernal B; Megonigal JP; Mozdzer TJ
    Glob Chang Biol; 2017 May; 23(5):2104-2116. PubMed ID: 27779794
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial response of coastal marshes to increased atmospheric CO2.
    Ratliff KM; Braswell AE; Marani M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):15580-4. PubMed ID: 26644577
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Replacing Spartina alterniflora with northward-afforested mangroves has the potential to acquire extra blue carbon.
    Liu T; Chen X; Du M; Sanders CJ; Li C; Tang J; Yang H
    Sci Total Environ; 2024 Apr; 921():170952. PubMed ID: 38360327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The importance of marshes providing soil stabilization to resist fast-flow erosion in case of a dike breach.
    Marin-Diaz B; Govers LL; van der Wal D; Olff H; Bouma TJ
    Ecol Appl; 2022 Sep; 32(6):e2622. PubMed ID: 35389532
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary, southeastern China.
    Hu M; Ren H; Ren P; Li J; Wilson BJ; Tong C
    J Environ Sci (China); 2017 Feb; 52():210-222. PubMed ID: 28254041
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spartina alterniflora invasion benefits blue carbon sequestration in China.
    Zhang J; Mao D; Liu J; Chen Y; Kirwan M; Sanders C; Zhou J; Lu Z; Qin G; Huang X; Li H; Yan H; Jiao N; Su J; Wang F
    Sci Bull (Beijing); 2024 Jun; 69(12):1991-2000. PubMed ID: 38755089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploring the Use of Living Shorelines for Stabilization and Nutrient Mitigation in New England.
    Schoell M; Ayvazian S; Cobb D; Grunden D; Chintala M; Gerber-Williams A; Pimenta A; Strobel C; Rocha K
    Ecol Restor; 2023 Jun; 41(2-3):84-98. PubMed ID: 37990651
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid carbon accumulation following managed realignment on the Bay of Fundy.
    Wollenberg JT; Ollerhead J; Chmura GL
    PLoS One; 2018; 13(3):e0193930. PubMed ID: 29561874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reef design and site hydrodynamics mediate oyster restoration and marsh stabilization outcomes.
    Wellman EH; Baillie CJ; Puckett BJ; Donaher SE; Trackenberg SN; Gittman RK
    Ecol Appl; 2022 Mar; 32(2):e2506. PubMed ID: 34870355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Physical stress, not biotic interactions, preclude an invasive grass from establishing in forb-dominated salt marshes.
    He Q; Cui B; An Y
    PLoS One; 2012; 7(3):e33164. PubMed ID: 22432003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coastal Ecology: Living Shorelines Reduce CoastalĀ Erosion.
    Lee Smee D
    Curr Biol; 2019 Jun; 29(11):R411-R413. PubMed ID: 31163143
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sources and chemical stability of soil organic carbon in natural and created coastal marshes of Louisiana.
    Kelsall M; Quirk T; Wilson C; Snedden GA
    Sci Total Environ; 2023 Apr; 867():161415. PubMed ID: 36621493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interactive effects of vegetation and sediment properties on erosion of salt marshes in the Northern Adriatic Sea.
    Lo VB; Bouma TJ; van Belzen J; Van Colen C; Airoldi L
    Mar Environ Res; 2017 Oct; 131():32-42. PubMed ID: 28941644
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary.
    Xia F; Zeleke J; Sheng Q; Wu JH; Quan ZX
    J Microbiol; 2015 May; 53(5):311-20. PubMed ID: 25935302
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluating the role of coastal habitats and sea-level rise in hurricane risk mitigation: An ecological economic assessment method and application to a business decision.
    Reddy SM; Guannel G; Griffin R; Faries J; Boucher T; Thompson M; Brenner J; Bernhardt J; Verutes G; Wood SA; Silver JA; Toft J; Rogers A; Maas A; Guerry A; Molnar J; DiMuro JL
    Integr Environ Assess Manag; 2016 Apr; 12(2):328-44. PubMed ID: 26123999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ecosystem engineers drive creek formation in salt marshes.
    Vu HD; Wie Ski K; Pennings SC
    Ecology; 2017 Jan; 98(1):162-174. PubMed ID: 28052386
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential effects of biological invasions on coastal blue carbon: A global review and meta-analysis.
    Davidson IC; Cott GM; Devaney JL; Simkanin C
    Glob Chang Biol; 2018 Nov; 24(11):5218-5230. PubMed ID: 30270555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes.
    Wang F; Eagle M; Kroeger KD; Spivak AC; Tang J
    Sci Total Environ; 2021 Jan; 750():141566. PubMed ID: 32882493
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantification of blue carbon in tropical salt marshes and their role in climate change mitigation.
    Perera N; Lokupitiya E; Halwatura D; Udagedara S
    Sci Total Environ; 2022 May; 820():153313. PubMed ID: 35066046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China.
    Yang H; Li X; Wang Z; Jia R; Liu L; Chen Y; Wei Y; Gao Y; Li G
    Sci Total Environ; 2014 Apr; 478():1-11. PubMed ID: 24530579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.