These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 26569503)
61. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China. Yang H; Li X; Wang Z; Jia R; Liu L; Chen Y; Wei Y; Gao Y; Li G Sci Total Environ; 2014 Apr; 478():1-11. PubMed ID: 24530579 [TBL] [Abstract][Full Text] [Related]
62. Gulf of Mexico estuarine blue carbon stock, extent and flux: Mangroves, marshes, and seagrasses: A North American hotspot. Thorhaug AL; Poulos HM; López-Portillo J; Barr J; Lara-Domínguez AL; Ku TC; Berlyn GP Sci Total Environ; 2019 Feb; 653():1253-1261. PubMed ID: 30759565 [TBL] [Abstract][Full Text] [Related]
63. Optimization of plant harvest and management patterns to enhance the carbon sink of reclaimed wetland in the Yangtze River estuary. Mei W; Yin Q; Tian X; Fu X; Guan Y; Wang L J Environ Manage; 2022 Jun; 312():114954. PubMed ID: 35338985 [TBL] [Abstract][Full Text] [Related]
64. Mangrove and Freshwater Wetland Conservation Through Carbon Offsets: A Cost-Benefit Analysis for Establishing Environmental Policies. Vázquez-González C; Moreno-Casasola P; Hernández ME; Campos A; Espejel I; Fermán-Almada JL Environ Manage; 2017 Feb; 59(2):274-290. PubMed ID: 27848002 [TBL] [Abstract][Full Text] [Related]
65. Nonlinear responses in salt marsh functioning to increased nitrogen addition. Vivanco L; Irvine IC; Martiny JB Ecology; 2015 Apr; 96(4):936-47. PubMed ID: 26230015 [TBL] [Abstract][Full Text] [Related]
66. Coastal engineering infrastructure impacts Blue Carbon habitats distribution and ecosystem functions. Mazarrasa I; Garcia-Orellana J; Puente A; Juanes JA Sci Rep; 2022 Nov; 12(1):19352. PubMed ID: 36369255 [TBL] [Abstract][Full Text] [Related]
67. Estuarine submerged aquatic vegetation habitat provides organic carbon storage across a shifting landscape. Hillmann ER; Rivera-Monroy VH; Nyman JA; La Peyre MK Sci Total Environ; 2020 May; 717():137217. PubMed ID: 32070897 [TBL] [Abstract][Full Text] [Related]
68. Valuing natural habitats for enhancing coastal resilience: Wetlands reduce property damage from storm surge and sea level rise. Rezaie AM; Loerzel J; Ferreira CM PLoS One; 2020; 15(1):e0226275. PubMed ID: 31940378 [TBL] [Abstract][Full Text] [Related]
69. Stronger network connectivity with lower diversity of soil fungal community was presented in coastal marshes after sixteen years of freshwater restoration. Xiao R; Guo Y; Zhang M; Pan W; Wang JJ Sci Total Environ; 2020 Nov; 744():140623. PubMed ID: 32693270 [TBL] [Abstract][Full Text] [Related]
70. Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster? Weis JS; Weis P Mar Pollut Bull; 2003 Jul; 46(7):816-20. PubMed ID: 12837299 [TBL] [Abstract][Full Text] [Related]
71. Nitrogen inputs promote the spread of an invasive marsh grass. Tyler AC; Lambrinos JG; Grosholz ED Ecol Appl; 2007 Oct; 17(7):1886-98. PubMed ID: 17974329 [TBL] [Abstract][Full Text] [Related]
72. An assessment of anthropogenic and climatic stressors on estuaries using a spatio-temporal GIS-modelling approach for sustainability: Towamba estuary, southeastern Australia. Al-Nasrawi AKM; Hamylton SM; Jones BG Environ Monit Assess; 2018 Jun; 190(7):375. PubMed ID: 29862438 [TBL] [Abstract][Full Text] [Related]
73. Flowering and biomass allocation in U.S. Atlantic coast Spartina alterniflora. Crosby SC; Ivens-Duran M; Bertness MD; Davey E; Deegan LA; Leslie HM Am J Bot; 2015 May; 102(5):669-76. PubMed ID: 26022481 [TBL] [Abstract][Full Text] [Related]
74. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Vasquez EA; Glenn EP; Guntenspergen GR; Brown JJ; Nelson SG Am J Bot; 2006 Dec; 93(12):1784-90. PubMed ID: 21642124 [TBL] [Abstract][Full Text] [Related]
76. Assessing shoreline exposure and oyster habitat suitability maximizes potential success for sustainable shoreline protection using restored oyster reefs. La Peyre MK; Serra K; Joyner TA; Humphries A PeerJ; 2015; 3():e1317. PubMed ID: 26500825 [TBL] [Abstract][Full Text] [Related]
77. Managing for No Net Loss of Ecological Services: An Approach for Quantifying Loss of Coastal Wetlands due to Sea Level Rise. Kassakian J; Jones A; Martinich J; Hudgens D Environ Manage; 2017 May; 59(5):736-751. PubMed ID: 28044183 [TBL] [Abstract][Full Text] [Related]
78. Carbon storage in rare ecosystems relative to their encroaching forests in western Lower Michigan. Megan Woller-Skar M; Locher A; Audia EM PLoS One; 2024; 19(6):e0305394. PubMed ID: 38885247 [TBL] [Abstract][Full Text] [Related]
79. [Phosphorus forms in marsh soils with different years of Li YZ; Sun ZG; Mao L; Chen BB; Hu XY; Wang XY; Shi ZX Ying Yong Sheng Tai Xue Bao; 2022 Apr; 33(4):1003-1011. PubMed ID: 35543053 [TBL] [Abstract][Full Text] [Related]
80. The high organic carbon accumulation in estuarine wetlands necessarily does not represent a high CO Xie M; Qian L; Dong H; Mei W; Fu X; Hu Y; Yan J; Sun Y; Wu P; Chen X; Wang L Environ Int; 2023 Feb; 172():107762. PubMed ID: 36689865 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]