These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26569579)

  • 1. Visible Surface Plasmon Modes in Single Bi₂Te₃ Nanoplate.
    Zhao M; Bosman M; Danesh M; Zeng M; Song P; Darma Y; Rusydi A; Lin H; Qiu CW; Loh KP
    Nano Lett; 2015 Dec; 15(12):8331-5. PubMed ID: 26569579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation and Manipulation of Visible Edge Plasmons in Bi
    Lu X; Hao Q; Cen M; Zhang G; Sun J; Mao L; Cao T; Zhou C; Jiang P; Yang X; Bao X
    Nano Lett; 2018 May; 18(5):2879-2884. PubMed ID: 29595988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Emission of Bullseye Nanoemitters on Bi
    Yan Q; Li X; Liang B
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32225070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cathodoluminescence and tip-plasmon resonance of Bi2Te3 triangular nanostructures.
    Yan Q; Wang S; Guan K; Guan X; He L
    PLoS One; 2024; 19(1):e0291251. PubMed ID: 38241382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study.
    Myroshnychenko V; Nelayah J; Adamo G; Geuquet N; Rodríguez-Fernández J; Pastoriza-Santos I; MacDonald KF; Henrard L; Liz-Marzán LM; Zheludev NI; Kociak M; García de Abajo FJ
    Nano Lett; 2012 Aug; 12(8):4172-80. PubMed ID: 22746278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathodoluminescence and optical absorption spectroscopy of plasmonic modes in chromium micro-rods.
    Ghorai G; Ghosh K; Das B; Sahoo S; Patra B; Samal P; Sahoo PK
    Nanotechnology; 2022 Dec; 34(7):. PubMed ID: 36384032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-orbit interactions in plasmonic crystals probed by site-selective cathodoluminescence spectroscopy.
    Taleb M; Samadi M; Davoodi F; Black M; Buhl J; Lüder H; Gerken M; Talebi N
    Nanophotonics; 2023 May; 12(10):1877-1889. PubMed ID: 37159805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actively Tunable Visible Surface Plasmons in Bi2 Te3 and their Energy-Harvesting Applications.
    Zhao M; Zhang J; Gao N; Song P; Bosman M; Peng B; Sun B; Qiu CW; Xu QH; Bao Q; Loh KP
    Adv Mater; 2016 Apr; 28(16):3138-44. PubMed ID: 26923685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Into the Void: Single Nanopore in Colloidally Synthesized Bi
    Kimberly TQ; Wang EYC; Navarro GD; Qi X; Ciesielski KM; Toberer ES; Kauzlarich SM
    Chem Mater; 2024 Jul; 36(13):6618-6626. PubMed ID: 39005532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators.
    Bicket IC; Bellido EP; Meuret S; Polman A; Botton GA
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i40-i51. PubMed ID: 29584929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A twin-free single-crystal Ag nanoplate plasmonic platform: hybridization of the optical nano-antenna and surface plasmon active surface.
    Lee H; Jeong KY; Kang T; Seo MK; Kim B
    Nanoscale; 2014 Jan; 6(1):514-20. PubMed ID: 24232508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal-insulator-metal nanocavities in near-ultraviolet spectrum.
    Li L; Wang L; Du C; Guan Z; Xiang Y; Wu W; Ren M; Zhang X; Tang A; Cai W; Xu J
    Nanoscale; 2020 Feb; 12(5):3112-3120. PubMed ID: 31965128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
    Long R; Li Y; Song L; Xiong Y
    Small; 2015 Aug; 11(32):3873-89. PubMed ID: 26097101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium Nanoparticle Plasmonics.
    Biggins JS; Yazdi S; Ringe E
    Nano Lett; 2018 Jun; 18(6):3752-3758. PubMed ID: 29771126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device.
    Rajput NS; Shao-Horn Y; Li XH; Kim SG; Jouiad M
    Phys Chem Chem Phys; 2017 Jul; 19(26):16989-16999. PubMed ID: 28597895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy.
    Wu Y; Li G; Camden JP
    Chem Rev; 2018 Mar; 118(6):2994-3031. PubMed ID: 29215265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of asymmetric morphology on coupling surface plasmon modes and generalized plasmon ruler.
    Zhang KJ; Da B; Ding ZJ
    Ultramicroscopy; 2018 Feb; 185():55-64. PubMed ID: 29182920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons.
    Sannomiya T; Konečná A; Matsukata T; Thollar Z; Okamoto T; García de Abajo FJ; Yamamoto N
    Nano Lett; 2020 Jan; 20(1):592-598. PubMed ID: 31855432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible quantum plasmonics from metallic nanodimers.
    Alpeggiani F; D'Agostino S; Sanvitto D; Gerace D
    Sci Rep; 2016 Oct; 6():34772. PubMed ID: 27752037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements.
    Losquin A; Zagonel LF; Myroshnychenko V; Rodríguez-González B; Tencé M; Scarabelli L; Förstner J; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2015 Feb; 15(2):1229-37. PubMed ID: 25603194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.