These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26571036)

  • 21. Exaggerated force production in altered Gz-levels during parabolic flight: the role of computational resources allocation.
    Mierau A; Girgenrath M
    Ergonomics; 2010 Feb; 53(2):278-85. PubMed ID: 20099180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Independence of reaction time and response force control during isometric leg extension.
    Fukushi T; Ohtsuki T
    J Sports Sci; 2004 Apr; 22(4):373-82. PubMed ID: 15161111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptation to selective visual scaling of short time scale processes in isometric force.
    Hu X; Newell KM
    Neurosci Lett; 2010 Jan; 469(1):131-4. PubMed ID: 19944745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age-related changes in posture control are differentially affected by postural and cognitive task complexity.
    Bernard-Demanze L; Dumitrescu M; Jimeno P; Borel L; Lacour M
    Curr Aging Sci; 2009 Jul; 2(2):139-49. PubMed ID: 20021408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Practice and transfer of the frequency structures of continuous isometric force.
    King AC; Newell KM
    Hum Mov Sci; 2014 Apr; 34():28-40. PubMed ID: 24704802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of signal acquisition and processing choices on ApEn values: towards a "gold standard" for distinguishing effort levels from isometric force records.
    Forrest SM; Challis JH; Winter SL
    Med Eng Phys; 2014 Jun; 36(6):676-83. PubMed ID: 24725708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of dynamic vibrotactile feedback on the control of isometric finger force.
    Ahmaniemi T
    IEEE Trans Haptics; 2013; 6(3):376-80. PubMed ID: 24808334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attentional loads associated with interlimb interactions underlying rhythmic bimanual coordination.
    Ridderikhoff A; Peper CL; Beek PJ
    Cognition; 2008 Dec; 109(3):372-88. PubMed ID: 19014874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor entropy in response to task demands and environmental information.
    Hong SL; Newell KM
    Chaos; 2008 Sep; 18(3):033131. PubMed ID: 19045469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of force profile during a maximum voluntary isometric contraction task.
    Househam E; McAuley J; Charles T; Lightfoot T; Swash M
    Muscle Nerve; 2004 Mar; 29(3):401-8. PubMed ID: 14981740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation to bimanual asymmetric weights in isometric force coordination.
    Hu X; Newell KM
    Neurosci Lett; 2011 Feb; 490(2):121-5. PubMed ID: 21185353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cognitive cost of motor reorganizations associated with muscular fatigue during a repetitive pointing task.
    Terrier R; Forestier N
    J Electromyogr Kinesiol; 2009 Dec; 19(6):e487-93. PubMed ID: 19217312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intermanual temporal differences in bimanual simple isometric coupling by instructions.
    Gutnik B; Hudson CG; Nicholson J
    Percept Mot Skills; 2009 Jun; 108(3):836-50. PubMed ID: 19725319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resource allocation and somatosensory P300 amplitude during dual task: effects of tracking speed and predictability of tracking direction.
    Kida T; Nishihira Y; Hatta A; Wasaka T; Tazoe T; Sakajiri Y; Nakata H; Kaneda T; Kuroiwa K; Akiyama S; Sakamoto M; Kamijo K; Higashiura T
    Clin Neurophysiol; 2004 Nov; 115(11):2616-28. PubMed ID: 15465451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attentional demands associated with postural control depend on task difficulty and visual condition.
    Remaud A; Boyas S; Caron GA; Bilodeau M
    J Mot Behav; 2012; 44(5):329-40. PubMed ID: 22934664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations.
    Quant S; Adkin AL; Staines WR; Maki BE; McIlroy WE
    BMC Neurosci; 2004 May; 5():18. PubMed ID: 15147586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dynamical framework to understand performance trade-offs and interference in dual tasks.
    Temprado JJ; Monno A; Laurent M; Zanone PG
    J Exp Psychol Hum Percept Perform; 2001 Dec; 27(6):1303-13. PubMed ID: 11766926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Force control strategies while driving electric powered wheelchairs with isometric and movement-sensing joysticks.
    Dicianno BE; Spaeth DM; Cooper RA; Fitzgerald SG; Boninger ML; Brown KW
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):144-50. PubMed ID: 17436887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How Variability and Effort Determine Coordination at Large Forces.
    Kolossiatis M; Charalambous T; Burdet E
    PLoS One; 2016; 11(3):e0149512. PubMed ID: 26934193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.