BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 26571091)

  • 1. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment.
    Rea G; Cristofaro F; Pani G; Pascucci B; Ghuge SA; Corsetto PA; Imbriani M; Visai L; Rizzo AM
    J Proteomics; 2016 Mar; 137():3-18. PubMed ID: 26571091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics and genomics of microgravity.
    Nichols HL; Zhang N; Wen X
    Physiol Genomics; 2006 Aug; 26(3):163-71. PubMed ID: 16705019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight.
    Mastroleo F; Van Houdt R; Leroy B; Benotmane MA; Janssen A; Mergeay M; Vanhavere F; Hendrickx L; Wattiez R; Leys N
    ISME J; 2009 Dec; 3(12):1402-19. PubMed ID: 19571896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spaceflight induced changes in the human proteome.
    Kononikhin AS; Starodubtseva NL; Pastushkova LK; Kashirina DN; Fedorchenko KY; Brhozovsky AG; Popov IA; Larina IM; Nikolaev EN
    Expert Rev Proteomics; 2017 Jan; 14(1):15-29. PubMed ID: 27817217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of microgravity on bone in humans.
    Grimm D; Grosse J; Wehland M; Mann V; Reseland JE; Sundaresan A; Corydon TJ
    Bone; 2016 Jun; 87():44-56. PubMed ID: 27032715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Latest knowledge about changes in the proteome in microgravity.
    Schulz H; Strauch SM; Richter P; Wehland M; Krüger M; Sahana J; Corydon TJ; Wise P; Baran R; Lebert M; Grimm D
    Expert Rev Proteomics; 2022 Jan; 19(1):43-59. PubMed ID: 35037812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Oxidative Stress on the Bone System in Response to the Space Special Environment.
    Tian Y; Ma X; Yang C; Su P; Yin C; Qian AR
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29023398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelled microgravity cultivation modulates N-acylhomoserine lactone production in Rhodospirillum rubrum S1H independently of cell density.
    Mastroleo F; Van Houdt R; Atkinson S; Mergeay M; Hendrickx L; Wattiez R; Leys N
    Microbiology (Reading); 2013 Dec; 159(Pt 12):2456-2466. PubMed ID: 24025602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How and why does the proteome respond to microgravity?
    Grimm D; Wise P; Lebert M; Richter P; Baatout S
    Expert Rev Proteomics; 2011 Feb; 8(1):13-27. PubMed ID: 21329425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space, the final frontier: A critical review of recent experiments performed in microgravity.
    Vandenbrink JP; Kiss JZ
    Plant Sci; 2016 Feb; 243():115-9. PubMed ID: 26795156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Knowledge about the Impact of Microgravity on Gene Regulation.
    Corydon TJ; Schulz H; Richter P; Strauch SM; Böhmer M; Ricciardi DA; Wehland M; Krüger M; Erzinger GS; Lebert M; Infanger M; Wise PM; Grimm D
    Cells; 2023 Mar; 12(7):. PubMed ID: 37048115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological effects of space environmental factors: A possible interaction between space radiation and microgravity.
    Yatagai F; Honma M; Dohmae N; Ishioka N
    Life Sci Space Res (Amst); 2019 Feb; 20():113-123. PubMed ID: 30797428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of gravity-responsive serum proteins in spaceflight mice using a quantitative proteomic approach with data-independent acquisition mass spectrometry.
    Kimura Y; Nakai Y; Ino Y; Akiyama T; Moriyama K; Ohira T; Saito T; Inaba Y; Kumagai K; Ryo A; Hirano H
    Proteomics; 2024 May; 24(9):e2300214. PubMed ID: 38475964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station.
    Leys N; Baatout S; Rosier C; Dams A; s'Heeren C; Wattiez R; Mergeay M
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):227-45. PubMed ID: 19572210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuro-consequences of the spaceflight environment.
    Mhatre SD; Iyer J; Puukila S; Paul AM; Tahimic CGT; Rubinstein L; Lowe M; Alwood JS; Sowa MB; Bhattacharya S; Globus RK; Ronca AE
    Neurosci Biobehav Rev; 2022 Jan; 132():908-935. PubMed ID: 34767877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro.
    Prasad B; Grimm D; Strauch SM; Erzinger GS; Corydon TJ; Lebert M; Magnusson NE; Infanger M; Richter P; Krüger M
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33317046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microgravity and space radiation inhibit autophagy in human capillary endothelial cells, through either opposite or synergistic effects on specific molecular pathways.
    Barravecchia I; De Cesari C; Forcato M; Scebba F; Pyankova OV; Bridger JM; Foster HA; Signore G; Borghini A; Andreassi M; Andreazzoli M; Bicciato S; Pè ME; Angeloni D
    Cell Mol Life Sci; 2021 Dec; 79(1):28. PubMed ID: 34936031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism.
    Huang B; Li DG; Huang Y; Liu CT
    Mil Med Res; 2018 May; 5(1):18. PubMed ID: 29807538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.