BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 26571091)

  • 41. Cells respond to space microgravity through cytoskeleton reorganization.
    Wu XT; Yang X; Tian R; Li YH; Wang CY; Fan YB; Sun LW
    FASEB J; 2022 Feb; 36(2):e22114. PubMed ID: 35076958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of weightlessness on the human organism and mammalian cells.
    Pietsch J; Bauer J; Egli M; Infanger M; Wise P; Ulbrich C; Grimm D
    Curr Mol Med; 2011 Jul; 11(5):350-64. PubMed ID: 21568935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microsome-associated proteome modifications of Arabidopsis seedlings grown on board the International Space Station reveal the possible effect on plants of space stresses other than microgravity.
    Mazars C; Brière C; Grat S; Pichereaux C; Rossignol M; Pereda-Loth V; Eche B; Boucheron-Dubuisson E; Le Disquet I; Medina FJ; Graziana A; Carnero-Diaz E
    Plant Signal Behav; 2014; 9(9):e29637. PubMed ID: 25763699
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of Spaceflight on Cardiovascular Physiology and Health.
    Shen M; Frishman WH
    Cardiol Rev; 2019; 27(3):122-126. PubMed ID: 30365406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The immune system in space and microgravity.
    Sonnenfeld G
    Med Sci Sports Exerc; 2002 Dec; 34(12):2021-7. PubMed ID: 12471311
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microgravity and immune cells.
    Lv H; Yang H; Jiang C; Shi J; Chen RA; Huang Q; Shao D
    J R Soc Interface; 2023 Feb; 20(199):20220869. PubMed ID: 36789512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Implications of Altered Endosome and Lysosome Biology in Space Environments.
    Johnson IRD; Nguyen CT; Wise P; Grimm D
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33147843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Effects of Space Radiation and Microgravity on Ocular Structures.
    Özelbaykal B; Öğretmenoğlu G; Gedik Ş
    Turk J Ophthalmol; 2022 Feb; 52(1):57-63. PubMed ID: 35196841
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spaceflight/microgravity inhibits the proliferation of hematopoietic stem cells by decreasing Kit-Ras/cAMP-CREB pathway networks as evidenced by RNA-Seq assays.
    Wang P; Tian H; Zhang J; Qian J; Li L; Shi L; Zhao Y
    FASEB J; 2019 May; 33(5):5903-5913. PubMed ID: 30721627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of gravity-responsive proteins in the femur of spaceflight mice using a quantitative proteomic approach.
    Egashira K; Ino Y; Nakai Y; Ohira T; Akiyama T; Moriyama K; Yamamoto Y; Kimura M; Ryo A; Saito T; Inaba Y; Hirano H; Kumagai K; Kimura Y
    J Proteomics; 2023 Sep; 288():104976. PubMed ID: 37482271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of Spaceflight and Artificial Gravity on the Mouse Retina: Biochemical and Proteomic Analysis.
    Mao XW; Byrum S; Nishiyama NC; Pecaut MJ; Sridharan V; Boerma M; Tackett AJ; Shiba D; Shirakawa M; Takahashi S; Delp MD
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30154332
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Soviet space flight: the human element.
    Garshnek V
    ASGSB Bull; 1988 May; 1():67-80. PubMed ID: 11589234
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal comfort and thermoregulation in manned space flight.
    Yang ZZ; Fei JX; Yu XJ
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):518-24. PubMed ID: 24654534
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests.
    Hellweg CE; Dilruba S; Adrian A; Feles S; Schmitz C; Berger T; Przybyla B; Briganti L; Franz M; Segerer J; Spitta LF; Henschenmacher B; Konda B; Diegeler S; Baumstark-Khan C; Panitz C; Reitz G
    Life Sci Space Res (Amst); 2015 Nov; 7():73-89. PubMed ID: 26553641
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptomic Signature of the Simulated Microgravity Response in
    Çelen İ; Jayasinghe A; Doh JH; Sabanayagam CR
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity.
    Convertino VA
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S45-52. PubMed ID: 8897404
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity.
    Marušič U; Meeusen R; Pišot R; Kavcic V
    Eur J Sport Sci; 2014; 14(8):813-22. PubMed ID: 24734884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models.
    Yang J; Zhang G; Dong D; Shang P
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30177626
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development.
    Ruden DM; Bolnick A; Awonuga A; Abdulhasan M; Perez G; Puscheck EE; Rappolee DA
    Stem Cells Dev; 2018 Sep; 27(18):1230-1236. PubMed ID: 29562866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.