BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26572357)

  • 1. Synthesis of water dispersed nanoparticles from different polysaccharides and their application in drug release.
    Ayadi F; Bayer IS; Marras S; Athanassiou A
    Carbohydr Polym; 2016 Jan; 136():282-91. PubMed ID: 26572357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin.
    Mutalik S; Suthar NA; Managuli RS; Shetty PK; Avadhani K; Kalthur G; Kulkarni RV; Thomas R
    Int J Biol Macromol; 2016 May; 86():709-20. PubMed ID: 26851203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles.
    Adsul M; Soni SK; Bhargava SK; Bansal V
    Biomacromolecules; 2012 Sep; 13(9):2890-5. PubMed ID: 22857394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable nanoparticles from prosopisylated cellulose as a platform for enhanced oral bioavailability of poorly water-soluble drugs.
    Kenechukwu FC; Dias ML; Ricci-Júnior E
    Carbohydr Polym; 2021 Mar; 256():117492. PubMed ID: 33483021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of a novel shell material-Starch-protein-fatty acid ternary nanoparticles on loading levels and in vitro release of curcumin.
    Zheng D; Huang C; Li B; Zhu X; Liu R; Zhao H
    Int J Biol Macromol; 2021 Dec; 192():471-478. PubMed ID: 34634332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyaluronic acid embedded cellulose acetate phthlate core/shell nanoparticulate carrier of 5-fluorouracil.
    Garg A; Rai G; Lodhi S; Jain AP; Yadav AK
    Int J Biol Macromol; 2016 Jun; 87():449-59. PubMed ID: 26955748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties.
    Li Z; Lin Q; McClements DJ; Fu Y; Xie H; Li T; Chen G
    Food Chem; 2021 Sep; 355():129686. PubMed ID: 33799264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles.
    Saikia C; Das MK; Ramteke A; Maji TK
    Int J Biol Macromol; 2016 Dec; 93(Pt A):1121-1132. PubMed ID: 27664928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin.
    Yan JK; Qiu WY; Wang YY; Wu JY
    J Agric Food Chem; 2017 Jul; 65(28):5720-5730. PubMed ID: 28657749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation.
    Teng Z; Luo Y; Wang Q
    J Agric Food Chem; 2012 Mar; 60(10):2712-20. PubMed ID: 22352467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery.
    Facchi SP; Scariot DB; Bueno PV; Souza PR; Figueiredo LC; Follmann HD; Nunes CS; Monteiro JP; Bonafé EG; Nakamura CV; Muniz EC; Martins AF
    Int J Biol Macromol; 2016 Jun; 87():237-45. PubMed ID: 26930578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.
    Chen FP; Ou SY; Tang CH
    J Agric Food Chem; 2016 Jun; 64(24):5053-9. PubMed ID: 27243766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of particle size and molecular interactions by sonoprecipitation method for enhancing dissolution rate of poorly water-soluble drug.
    Tran TT; Tran KA; Tran PH
    Ultrason Sonochem; 2015 May; 24():256-63. PubMed ID: 25500098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of curcumin-zein-ethyl cellulose composite nanoparticles using antisolvent co-precipitation method.
    Hasankhan S; Tabibiazar M; Hosseini SM; Ehsani A; Ghorbani M
    Int J Biol Macromol; 2020 Nov; 163():1538-1545. PubMed ID: 32784024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and evaluation of BSA-based hydrosol nanoparticles cross-linked with genipin for oral administration of poorly water-soluble curcumin.
    Shahgholian N; Rajabzadeh G; Malaekeh-Nikouei B
    Int J Biol Macromol; 2017 Nov; 104(Pt A):788-798. PubMed ID: 28647524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of methotrexate intercalated layered double hydroxides: particle control, structure and bioassay explore.
    Tian DY; Liu ZL; Li SP; Li XD
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():297-305. PubMed ID: 25491832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance.
    Yadav D; Kumar N
    Int J Pharm; 2014 Dec; 477(1-2):564-77. PubMed ID: 25445971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a smart pH-responsive magnetic nanocomposite as high loading carrier of pharmaceutical agents.
    Berah R; Ghorbani M; Moghadamnia AA
    Int J Biol Macromol; 2017 Jun; 99():731-738. PubMed ID: 28284933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery.
    Rani R; Dilbaghi N; Dhingra D; Kumar S
    Int J Biol Macromol; 2015; 78():173-9. PubMed ID: 25881957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.