These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 26572500)

  • 1. Fabrication of Ruthenium Nanoparticles in Porous Organic Polymers: Towards Advanced Heterogeneous Catalytic Nanoreactors.
    Mondal J; Kundu SK; Hung Ng WK; Singuru R; Borah P; Hirao H; Zhao Y; Bhaumik A
    Chemistry; 2015 Dec; 21(52):19016-27. PubMed ID: 26572500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers.
    Li L; Zhao H; Wang J; Wang R
    ACS Nano; 2014 May; 8(5):5352-64. PubMed ID: 24773300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating the composition of Pt(x)Ru(100-x)/C nanoparticles to their structural aspects and electrocatalytic activities in the methanol oxidation reaction.
    Taufany F; Pan CJ; Lai FJ; Chou HL; Sarma LS; Rick J; Lin JM; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2013 Jan; 19(3):905-15. PubMed ID: 23197430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania.
    Song A; Lu G
    Environ Technol; 2015; 36(9-12):1160-6. PubMed ID: 25358013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-fine Pd nanoparticles confined in a porous organic polymer: A leaching-and-aggregation-resistant catalyst for the efficient reduction of nitroarenes by NaBH
    Yuan M; Yang R; Wei S; Hu X; Xu D; Yang J; Dong Z
    J Colloid Interface Sci; 2019 Mar; 538():720-730. PubMed ID: 30471943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic water oxidation performance in an extended porous organic framework with a covalent alliance of distinct Ru sites.
    Boro B; Adak MK; Biswas S; Sarkar C; Nailwal Y; Shrotri A; Chakraborty B; Wong BM; Mondal J
    Nanoscale; 2022 May; 14(20):7621-7633. PubMed ID: 35545095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature.
    Mondal J; Trinh QT; Jana A; Ng WK; Borah P; Hirao H; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15307-19. PubMed ID: 27258184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ru nanoclusters confined in porous organic cages for catalytic hydrolysis of ammonia borane and tandem hydrogenation reaction.
    Song Q; Wang WD; Hu X; Dong Z
    Nanoscale; 2019 Nov; 11(44):21513-21521. PubMed ID: 31686069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium-Equipped Porous Organic Polymers.
    Paul R; Shit SC; Fovanna T; Ferri D; Srinivasa Rao B; Gunasooriya GTKK; Dao DQ; Le QV; Shown I; Sherburne MP; Trinh QT; Mondal J
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50550-50565. PubMed ID: 33111522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefunctionalized Porous Organic Polymers: Effective Supports of Surface Palladium Nanoparticles for the Enhancement of Catalytic Performances in Dehalogenation.
    Zhong H; Liu C; Zhou H; Wang Y; Wang R
    Chemistry; 2016 Aug; 22(35):12533-41. PubMed ID: 27465930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly active Ru/TiO
    Camposeco R; Miguel O; Torres AE; Armas DE; Zanella R
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):98076-98090. PubMed ID: 37603243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticles supported by imidazolium-based porous organic polymers for nitroarene reduction.
    Su Y; Li X; Wang Y; Zhong H; Wang R
    Dalton Trans; 2016 Nov; 45(42):16896-16903. PubMed ID: 27711874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafine Nanoparticle-Supported Ru Nanoclusters with Ultrahigh Catalytic Activity.
    Zhu L; Jiang Y; Zheng J; Zhang N; Yu C; Li Y; Pao CW; Chen JL; Jin C; Lee JF; Zhong CJ; Chen BH
    Small; 2015 Sep; 11(34):4385-93. PubMed ID: 26081741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium nanoparticles on nano-level-controlled carbon supports as highly effective catalysts for arene hydrogenation.
    Takasaki M; Motoyama Y; Higashi K; Yoon SH; Mochida I; Nagashima H
    Chem Asian J; 2007 Dec; 2(12):1524-33. PubMed ID: 17973283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid.
    Chen J; Wang S; Huang J; Chen L; Ma L; Huang X
    ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics.
    Su F; Lv L; Lee FY; Liu T; Cooper AI; Zhao XS
    J Am Chem Soc; 2007 Nov; 129(46):14213-23. PubMed ID: 17973376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust ultrafine ruthenium nanoparticles enabled by covalent organic gel precursor for selective reduction of nitrobenzene in water.
    Zhong H; Gong Y; Liu W; Zhang B; Hu S; Wang R
    Dalton Trans; 2019 Feb; 48(7):2345-2351. PubMed ID: 30656315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Pd/Ru Bimetallic Nanoparticles by
    Gomez-Bolivar J; Mikheenko IP; Orozco RL; Sharma S; Banerjee D; Walker M; Hand RA; Merroun ML; Macaskie LE
    Front Microbiol; 2019; 10():1276. PubMed ID: 31281292
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of ZnSO
    Sun H; Fan Y; Sun X; Chen Z; Li H; Peng Z; Liu Z
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(eta 6-C6Me6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation.
    Widegren JA; Bennett MA; Finke RG
    J Am Chem Soc; 2003 Aug; 125(34):10301-10. PubMed ID: 12926954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.