These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26572529)

  • 41. Using bearing area parameters to quantify early erosive tooth surface changes in enamel: a pilot study.
    Field J; German M; Waterhouse P
    J Dent; 2013 Nov; 41(11):1060-7. PubMed ID: 23998946
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Erosive potential of soy-based beverages on dental enamel.
    Santos EJLD; Meira IA; Sousa ET; Amaechi BT; Sampaio FC; Oliveira AFB
    Acta Odontol Scand; 2019 Jul; 77(5):340-346. PubMed ID: 30741104
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of acidic fluoride solutions on early enamel erosion in vivo.
    Hjortsjö C; Jonski G; Thrane PS; Saxegaard E; Young A
    Caries Res; 2009; 43(2):126-31. PubMed ID: 19321990
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Erosion and attrition of human enamel in vitro part I: interaction effects.
    Eisenburger M; Addy M
    J Dent; 2002; 30(7-8):341-7. PubMed ID: 12554116
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human and bovine enamel erosion under 'single-drink' conditions.
    White AJ; Yorath C; ten Hengel V; Leary SD; Huysmans MC; Barbour ME
    Eur J Oral Sci; 2010 Dec; 118(6):604-9. PubMed ID: 21083622
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of ion supplementation of a commercial soft drink on tooth enamel erosion.
    Magalhães AC; Moraes SM; Rios D; Buzalaf MA
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Feb; 26(2):152-6. PubMed ID: 19680884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protective effect of the in situ formed short-term salivary pellicle.
    Hannig M; Fiebiger M; Güntzer M; Döbert A; Zimehl R; Nekrashevych Y
    Arch Oral Biol; 2004 Nov; 49(11):903-10. PubMed ID: 15353246
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of the erosive potential of gastric juice and a carbonated drink in vitro.
    Bartlett DW; Coward PY
    J Oral Rehabil; 2001 Nov; 28(11):1045-7. PubMed ID: 11722721
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morphology and structure of polymer layers protecting dental enamel against erosion.
    Beyer M; Reichert J; Sigusch BW; Watts DC; Jandt KD
    Dent Mater; 2012 Oct; 28(10):1089-97. PubMed ID: 22883479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New insights into structural alteration of enamel apatite induced by citric acid and sodium fluoride solutions.
    Wang X; Klocke A; Mihailova B; Tosheva L; Bismayer U
    J Phys Chem B; 2008 Jul; 112(29):8840-8. PubMed ID: 18588337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Commercial soft drinks: pH and in vitro dissolution of enamel.
    Jain P; Nihill P; Sobkowski J; Agustin MZ
    Gen Dent; 2007; 55(2):150-4; quiz 155, 167-8. PubMed ID: 17333990
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of the effects of TiF4 and NaF solutions at pH 1.2 and 3.5 on enamel erosion in vitro.
    Wiegand A; Waldheim E; Sener B; Magalhães AC; Attin T
    Caries Res; 2009; 43(4):269-77. PubMed ID: 19439948
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity.
    Barbour ME; Shellis RP
    Phys Med Biol; 2007 Feb; 52(4):899-910. PubMed ID: 17264360
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enamel dissolution in citric acid as a function of calcium and phosphate concentrations and degree of saturation with respect to hydroxyapatite.
    Barbour ME; Parker DM; Allen GC; Jandt KD
    Eur J Oral Sci; 2003 Oct; 111(5):428-33. PubMed ID: 12974688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Erosive potential of beverages sold in Australian schools.
    Cochrane NJ; Cai F; Yuan Y; Reynolds EC
    Aust Dent J; 2009 Sep; 54(3):238-44; quiz 277. PubMed ID: 19709112
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Susceptibility of enamel to initial erosion in relation to tooth type, tooth surface and enamel depth.
    Carvalho TS; Lussi A
    Caries Res; 2015; 49(2):109-15. PubMed ID: 25592786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pure hydroxyapatite as a substitute for enamel in erosion experiments.
    Ronay FC; Wegehaupt FJ; Becker K; Wiedemeier DB; Attin T; Lussi A; Steiger-Ronay V
    J Dent; 2019 May; 84():89-94. PubMed ID: 30959076
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Erosive potential of sports beverages.
    Cochrane NJ; Yuan Y; Walker GD; Shen P; Chang CH; Reynolds C; Reynolds EC
    Aust Dent J; 2012 Sep; 57(3):359-64; quiz 398. PubMed ID: 22924362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The erosive potential of commercially available mouthrinses on enamel as measured by Quantitative Light-induced Fluorescence (QLF).
    Pretty IA; Edgar WM; Higham SM
    J Dent; 2003 Jul; 31(5):313-9. PubMed ID: 12799115
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of human saliva on the development of artificial erosions.
    Hellwig E; Lussi A; Goetz F
    Caries Res; 2013; 47(6):553-8. PubMed ID: 23838437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.