These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26572774)

  • 1. An improved alkaline direct formate paper microfluidic fuel cell.
    Galvan V; Domalaon K; Tang C; Sotez S; Mendez A; Jalali-Heravi M; Purohit K; Pham L; Haan J; Gomez FA
    Electrophoresis; 2016 Feb; 37(3):504-10. PubMed ID: 26572774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabric-based alkaline direct formate microfluidic fuel cells.
    Domalaon K; Tang C; Mendez A; Bernal F; Purohit K; Pham L; Haan J; Gomez FA
    Electrophoresis; 2017 Apr; 38(8):1224-1231. PubMed ID: 28078718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic direct formate fuel cell on paper.
    Copenhaver TS; Purohit KH; Domalaon K; Pham L; Burgess BJ; Manorothkul N; Galvan V; Sotez S; Gomez FA; Haan JL
    Electrophoresis; 2015 Aug; 36(16):1825-9. PubMed ID: 25546700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.
    Vo T; Purohit K; Nguyen C; Biggs B; Mayoral S; Haan JL
    ChemSusChem; 2015 Nov; 8(22):3853-8. PubMed ID: 26510492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.
    Li Y; Sun X; Feng Y
    ChemSusChem; 2017 May; 10(10):2135-2139. PubMed ID: 28296200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Inexpensive Paper-Based Aluminum-Air Battery.
    Avoundjian A; Galvan V; Gomez FA
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2006 Mar; 6(3):353-61. PubMed ID: 16511617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of a permeation-based microfluidic direct formic acid fuel cell (DFAFC).
    Erickson EM; Mitrovski SM; Gewirth AA; Nuzzo RG
    Electrophoresis; 2011 Apr; 32(8):947-56. PubMed ID: 21425176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal.
    Guo W; Cui Y; Song H; Sun J
    Bioprocess Biosyst Eng; 2014 Sep; 37(9):1749-58. PubMed ID: 24535080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital Pregnancy Test Powered by an Air-Breathing Paper-Based Microfluidic Fuel Cell Stack Using Human Urine as Fuel.
    Vera-Estrada IL; Olivares-Ramírez JM; Rodríguez-Reséndiz J; Dector A; Mendiola-Santibañez JD; Amaya-Cruz DM; Sosa-Domínguez A; Ortega-Díaz D; Dector D; Ovando-Medina VM; Antonio-Carmona ID
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Electrochemical Properties of Carbon Paper as Cathodes for Microfluidic Fuel Cells by the Electrochemical Activation in Different Solutions.
    Liu C; Sun C; Gao Y; Lan W; Chen S
    ACS Omega; 2021 Jul; 6(29):19153-19161. PubMed ID: 34337253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Power Density Direct Formate Microfluidic Fuel Cells with the Different Catalyst-Free Oxidants.
    Liu C; Gao Y; Liu L; Sun C; Jiang P; Liu J
    ACS Omega; 2022 Aug; 7(32):28646-28657. PubMed ID: 35990452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic biofuel cells: the influence of electrode diffusion layer on performance.
    Lim KG; Palmore GT
    Biosens Bioelectron; 2007 Jan; 22(6):941-7. PubMed ID: 16753293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic voltammetry electrodeposition of well-dispersed Pd nanoparticles on carbon paper as a flow-through anode for microfluidic direct formate fuel cells.
    Zhang T; Zhu X; Ye DD; Chen R; Zhou Y; Liao Q
    Nanoscale; 2020 Oct; 12(39):20270-20278. PubMed ID: 33000821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Sodium-Ion-Conducting Direct Formate Fuel Cell: Generating Electricity and Producing Base.
    Li Y; Feng Y; Sun X; He Y
    Angew Chem Int Ed Engl; 2017 May; 56(21):5734-5737. PubMed ID: 28338289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells.
    Cheng S; Liu H; Logan BE
    Environ Sci Technol; 2006 Jan; 40(1):364-9. PubMed ID: 16433373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of microfluidic fuel cells using transport principles.
    Lee J; Lim KG; Palmore GT; Tripathi A
    Anal Chem; 2007 Oct; 79(19):7301-7. PubMed ID: 17727270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems.
    Liu S; Song H; Wei S; Yang F; Li X
    Bioresour Technol; 2014 Aug; 166():575-83. PubMed ID: 24956029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.