These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 26573226)
1. Five omic technologies are concordant in differentiating the biochemical characteristics of the berries of five grapevine (Vitis vinifera L.) cultivars. Ghan R; Van Sluyter SC; Hochberg U; Degu A; Hopper DW; Tillet RL; Schlauch KA; Haynes PA; Fait A; Cramer GR BMC Genomics; 2015 Nov; 16():946. PubMed ID: 26573226 [TBL] [Abstract][Full Text] [Related]
2. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. Deluc LG; Quilici DR; Decendit A; Grimplet J; Wheatley MD; Schlauch KA; Mérillon JM; Cushman JC; Cramer GR BMC Genomics; 2009 May; 10():212. PubMed ID: 19426499 [TBL] [Abstract][Full Text] [Related]
3. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. Degu A; Hochberg U; Sikron N; Venturini L; Buson G; Ghan R; Plaschkes I; Batushansky A; Chalifa-Caspi V; Mattivi F; Delledonne M; Pezzotti M; Rachmilevitch S; Cramer GR; Fait A BMC Plant Biol; 2014 Jul; 14():188. PubMed ID: 25064275 [TBL] [Abstract][Full Text] [Related]
4. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. Ghan R; Petereit J; Tillett RL; Schlauch KA; Toubiana D; Fait A; Cramer GR BMC Plant Biol; 2017 May; 17(1):94. PubMed ID: 28558655 [TBL] [Abstract][Full Text] [Related]
6. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
7. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening. Cramer GR; Cochetel N; Ghan R; Destrac-Irvine A; Delrot S BMC Plant Biol; 2020 Jan; 20(1):41. PubMed ID: 31992236 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive and comparative lipidome analysis of Vitis vinifera L. cv. Pinot Noir and Japanese indigenous V. vinifera L. cv. Koshu grape berries. Arita K; Honma T; Suzuki S PLoS One; 2017; 12(10):e0186952. PubMed ID: 29053756 [TBL] [Abstract][Full Text] [Related]
10. Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation. Massonnet M; Fasoli M; Tornielli GB; Altieri M; Sandri M; Zuccolotto P; Paci P; Gardiman M; Zenoni S; Pezzotti M Plant Physiol; 2017 Aug; 174(4):2376-2396. PubMed ID: 28652263 [TBL] [Abstract][Full Text] [Related]
11. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. Castellarin SD; Di Gaspero G; Marconi R; Nonis A; Peterlunger E; Paillard S; Adam-Blondon AF; Testolin R BMC Genomics; 2006 Jan; 7():12. PubMed ID: 16433923 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional analysis of late ripening stages of grapevine berry. Guillaumie S; Fouquet R; Kappel C; Camps C; Terrier N; Moncomble D; Dunlevy JD; Davies C; Boss PK; Delrot S BMC Plant Biol; 2011 Nov; 11():165. PubMed ID: 22098939 [TBL] [Abstract][Full Text] [Related]
13. 2-Methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype. Koch A; Doyle CL; Matthews MA; Williams LE; Ebeler SE Phytochemistry; 2010 Dec; 71(17-18):2190-8. PubMed ID: 20965529 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). Savoi S; Wong DC; Arapitsas P; Miculan M; Bucchetti B; Peterlunger E; Fait A; Mattivi F; Castellarin SD BMC Plant Biol; 2016 Mar; 16():67. PubMed ID: 27001212 [TBL] [Abstract][Full Text] [Related]
16. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. Fortes AM; Agudelo-Romero P; Silva MS; Ali K; Sousa L; Maltese F; Choi YH; Grimplet J; Martinez-Zapater JM; Verpoorte R; Pais MS BMC Plant Biol; 2011 Nov; 11():149. PubMed ID: 22047180 [TBL] [Abstract][Full Text] [Related]
17. Impact of Grapevine Red Blotch Disease on Grape Composition of Vitis vinifera Cabernet Sauvignon, Merlot, and Chardonnay. Girardello RC; Cooper ML; Smith RJ; Lerno LA; Bruce RC; Eridon S; Oberholster A J Agric Food Chem; 2019 May; 67(19):5496-5511. PubMed ID: 31013081 [TBL] [Abstract][Full Text] [Related]
18. Free terpene evolution during the berry maturation of five Vitis vinifera L. cultivars. Luo J; Brotchie J; Pang M; Marriott PJ; Howell K; Zhang P Food Chem; 2019 Nov; 299():125101. PubMed ID: 31323442 [TBL] [Abstract][Full Text] [Related]
19. Berry Shriveling Significantly Alters Shiraz (Vitis vinifera L.) Grape and Wine Chemical Composition. Šuklje K; Zhang X; Antalick G; Clark AC; Deloire A; Schmidtke LM J Agric Food Chem; 2016 Feb; 64(4):870-80. PubMed ID: 26761394 [TBL] [Abstract][Full Text] [Related]
20. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Guan L; Dai Z; Wu BH; Wu J; Merlin I; Hilbert G; Renaud C; Gomès E; Edwards E; Li SH; Delrot S Planta; 2016 Jan; 243(1):23-41. PubMed ID: 26335854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]