These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26573427)

  • 1. Adhesion between highly stretchable materials.
    Tang J; Li J; Vlassak JJ; Suo Z
    Soft Matter; 2016 Jan; 12(4):1093-9. PubMed ID: 26573427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Staples for Tough and Stretchable Adhesion in Integrated Soft Materials.
    Chen B; Yang J; Bai R; Suo Z
    Adv Healthc Mater; 2019 Oct; 8(19):e1900810. PubMed ID: 31368256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures.
    Yuk H; Zhang T; Parada GA; Liu X; Zhao X
    Nat Commun; 2016 Jun; 7():12028. PubMed ID: 27345380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically Coupled Interfacial Adhesion in Multimaterial Printing of Hydrogels and Elastomers.
    Tian K; Suo Z; Vlassak JJ
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):31002-31009. PubMed ID: 32536152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel-Elastomer Ionic Sensors for Hand-Motion Monitoring.
    Gu G; Xu H; Peng S; Li L; Chen S; Lu T; Guo X
    Soft Robot; 2019 Jun; 6(3):368-376. PubMed ID: 30848994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion between Hydrophobic Elastomer and Hydrogel through Hydrophilic Modification and Interfacial Segregation.
    Tian K; Bae J; Suo Z; Vlassak JJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43252-43261. PubMed ID: 30462477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stretchable electroluminescent skin for optical signaling and tactile sensing.
    Larson C; Peele B; Li S; Robinson S; Totaro M; Beccai L; Mazzolai B; Shepherd R
    Science; 2016 Mar; 351(6277):1071-4. PubMed ID: 26941316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Stretchable and Notch-Insensitive Hydrogel Based on Polyacrylamide and Milk Protein.
    Ma J; Lee J; Han SS; Oh KH; Nam KT; Sun JY
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29220-29226. PubMed ID: 27749026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties derived from phase separation in co-polymer hydrogels.
    Nixon RM; Ten Hove JB; Orozco A; Jenkins ZM; Baenen PC; Wiatt MK; Zuluaga J; Sawyer WG; Angelini TE
    J Mech Behav Biomed Mater; 2015 Mar; 55():286-294. PubMed ID: 26618659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics.
    Zhu H; Hu X; Liu B; Chen Z; Qu S
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59243-59251. PubMed ID: 34870967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastretchable Conductor Fabricated on Skin-Like Hydrogel-Elastomer Hybrid Substrates for Skin Electronics.
    Kim SH; Jung S; Yoon IS; Lee C; Oh Y; Hong JM
    Adv Mater; 2018 Jun; 30(26):e1800109. PubMed ID: 29761554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instant tough bonding of hydrogels for soft machines and electronics.
    Wirthl D; Pichler R; Drack M; Kettlguber G; Moser R; Gerstmayr R; Hartmann F; Bradt E; Kaltseis R; Siket CM; Schausberger SE; Hild S; Bauer S; Kaltenbrunner M
    Sci Adv; 2017 Jun; 3(6):e1700053. PubMed ID: 28691092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells.
    Liu X; Tang TC; Tham E; Yuk H; Lin S; Lu TK; Zhao X
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2200-2205. PubMed ID: 28202725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromechanical properties of biomedical hydrogel for application as microchannel elastomer.
    Ige EO; Raj MK; Dare AA; Chakraborty S
    J Mech Behav Biomed Mater; 2018 Jan; 77():217-224. PubMed ID: 28946052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PDMS-Based Elastomer Tuned Soft, Stretchable, and Sticky for Epidermal Electronics.
    Jeong SH; Zhang S; Hjort K; Hilborn J; Wu Z
    Adv Mater; 2016 Jul; 28(28):5830-6. PubMed ID: 27167137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing.
    Zhang B; Li S; Hingorani H; Serjouei A; Larush L; Pawar AA; Goh WH; Sakhaei AH; Hashimoto M; Kowsari K; Magdassi S; Ge Q
    J Mater Chem B; 2018 May; 6(20):3246-3253. PubMed ID: 32254382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation.
    Liu Y; Liu J; Chen S; Lei T; Kim Y; Niu S; Wang H; Wang X; Foudeh AM; Tok JB; Bao Z
    Nat Biomed Eng; 2019 Jan; 3(1):58-68. PubMed ID: 30932073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stretchable, self-healing elastomer hydrogel with universal adhesion driven by reversible cross-links and protein enhancement.
    Lei K; Chen M; Wang X; Gao J; Zhang J; Li G; Bao J; Li Z; Li J
    J Mater Chem B; 2022 Nov; 10(44):9188-9201. PubMed ID: 36314575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer.
    Cao B; Li L; Tang Q; Cheng G
    Biomaterials; 2013 Oct; 34(31):7592-600. PubMed ID: 23871130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles.
    Stoyanov H; Kollosche M; Risse S; Waché R; Kofod G
    Adv Mater; 2013 Jan; 25(4):578-83. PubMed ID: 23090668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.