BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26573665)

  • 1. A fast method for calculating reliable event supports in tree reconciliations via Pareto optimality.
    To TH; Jacox E; Ranwez V; Scornavacca C
    BMC Bioinformatics; 2015 Nov; 16():384. PubMed ID: 26573665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony.
    Jacox E; Chauve C; Szöllősi GJ; Ponty Y; Scornavacca C
    Bioinformatics; 2016 Jul; 32(13):2056-8. PubMed ID: 27153713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Support measures to estimate the reliability of evolutionary events predicted by reconciliation methods.
    Nguyen TH; Ranwez V; Berry V; Scornavacca C
    PLoS One; 2013; 8(10):e73667. PubMed ID: 24124449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring Pareto-optimal reconciliations across multiple event costs under the duplication-loss-coalescence model.
    Mawhorter R; Liu N; Libeskind-Hadas R; Wu YC
    BMC Bioinformatics; 2019 Dec; 20(Suppl 20):639. PubMed ID: 31842732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution and reconciliation of non-binary gene trees with transfers, duplications and losses.
    Jacox E; Weller M; Tannier E; Scornavacca C
    Bioinformatics; 2017 Apr; 33(7):980-987. PubMed ID: 28073758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
    Kordi M; Bansal MS
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1077-1090. PubMed ID: 28622673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree.
    Wu T; Zhang L
    BMC Bioinformatics; 2011 Oct; 12 Suppl 9(Suppl 9):S7. PubMed ID: 22151151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cophylogeny reconstruction via an approximate Bayesian computation.
    Baudet C; Donati B; Sinaimeri B; Crescenzi P; Gautier C; Matias C; Sagot MF
    Syst Biol; 2015 May; 64(3):416-31. PubMed ID: 25540454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss.
    Bansal MS; Alm EJ; Kellis M
    Bioinformatics; 2012 Jun; 28(12):i283-91. PubMed ID: 22689773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the impact of uncertain gene tree rooting on duplication-transfer-loss reconciliation.
    Kundu S; Bansal MS
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):290. PubMed ID: 30367593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast algorithm for the reconciliation of gene trees and LGT networks.
    Scornavacca C; Mayol JCP; Cardona G
    J Theor Biol; 2017 Apr; 418():129-137. PubMed ID: 28111320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient method for exploring the space of gene tree/species tree reconciliations in a probabilistic framework.
    Doyon JP; Hamel S; Chauve C
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):26-39. PubMed ID: 21464510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconciliation revisited: handling multiple optima when reconciling with duplication, transfer, and loss.
    Bansal MS; Alm EJ; Kellis M
    J Comput Biol; 2013 Oct; 20(10):738-54. PubMed ID: 24033262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space of gene/species trees reconciliations and parsimonious models.
    Doyon JP; Chauve C; Hamel S
    J Comput Biol; 2009 Oct; 16(10):1399-418. PubMed ID: 19754270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
    Kordi M; Bansal MS
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):587-599. PubMed ID: 28055898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RecPhyloXML: a format for reconciled gene trees.
    Duchemin W; Gence G; Arigon Chifolleau AM; Arvestad L; Bansal MS; Berry V; Boussau B; Chevenet F; Comte N; Davín AA; Dessimoz C; Dylus D; Hasic D; Mallo D; Planel R; Posada D; Scornavacca C; Szöllosi G; Zhang L; Tannier É; Daubin V
    Bioinformatics; 2018 Nov; 34(21):3646-3652. PubMed ID: 29762653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pareto-optimal phylogenetic tree reconciliation.
    Libeskind-Hadas R; Wu YC; Bansal MS; Kellis M
    Bioinformatics; 2014 Jun; 30(12):i87-95. PubMed ID: 24932009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene tree species tree reconciliation with gene conversion.
    Hasić D; Tannier E
    J Math Biol; 2019 May; 78(6):1981-2014. PubMed ID: 30767052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconciliation and local gene tree rearrangement can be of mutual profit.
    Nguyen TH; Ranwez V; Pointet S; Chifolleau AM; Doyon JP; Berry V
    Algorithms Mol Biol; 2013 Apr; 8(1):12. PubMed ID: 23566548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.