These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26573690)

  • 1. Prediction of municipal solid waste generation using nonlinear autoregressive network.
    Younes MK; Nopiah ZM; Basri NE; Basri H; Abushammala MF; Maulud KN
    Environ Monit Assess; 2015 Dec; 187(12):753. PubMed ID: 26573690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid waste forecasting using modified ANFIS modeling.
    Younes MK; Nopiah ZM; Basri NE; Basri H; Abushammala MF; K N A M
    J Air Waste Manag Assoc; 2015 Oct; 65(10):1229-38. PubMed ID: 26223583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.
    Abbasi M; El Hanandeh A
    Waste Manag; 2016 Oct; 56():13-22. PubMed ID: 27297046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative performance analysis of support vector regression and artificial neural network for prediction of municipal solid waste generation.
    Jassim MS; Coskuner G; Zontul M
    Waste Manag Res; 2022 Feb; 40(2):195-204. PubMed ID: 33818220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis.
    Adamović VM; Antanasijević DZ; Ristić MĐ; Perić-Grujić AA; Pocajt VV
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):299-311. PubMed ID: 27718111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting municipal solid waste generation using prognostic tools and regression analysis.
    Ghinea C; Drăgoi EN; Comăniţă ED; Gavrilescu M; Câmpean T; Curteanu S; Gavrilescu M
    J Environ Manage; 2016 Nov; 182():80-93. PubMed ID: 27454099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.
    Azadi S; Karimi-Jashni A
    Waste Manag; 2016 Feb; 48():14-23. PubMed ID: 26482809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of artificial intelligence neural network modeling to predict the generation of domestic, commercial and construction wastes.
    Coskuner G; Jassim MS; Zontul M; Karateke S
    Waste Manag Res; 2021 Mar; 39(3):499-507. PubMed ID: 32586206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Municipal solid waste development phases: Evidence from EU27.
    Vujić G; Gonzalez-Roof A; Stanisavljević N; Ragossnig AM
    Waste Manag Res; 2015 Dec; 33(12):1112-20. PubMed ID: 26574580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.
    Younes MK; Nopiah ZM; Basri NE; Basri H; Abushammala MF; Younes MY
    Waste Manag; 2016 Sep; 55():3-11. PubMed ID: 26522806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and forecasting of municipal solid waste in Nankana City using geo-spatial techniques.
    Mahmood S; Sharif F; Rahman AU; Khan AU
    Environ Monit Assess; 2018 Apr; 190(5):275. PubMed ID: 29644486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-lagged effects of weekly climatic and socio-economic factors on ANN municipal yard waste prediction models.
    Vu HL; Ng KTW; Bolingbroke D
    Waste Manag; 2019 Feb; 84():129-140. PubMed ID: 30691884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic assessment of economic and environmental performance index and generation, composition, environmental and human health risks of hospital solid waste in developing countries; A state of the art of review.
    Ansari M; Ehrampoush MH; Farzadkia M; Ahmadi E
    Environ Int; 2019 Nov; 132():105073. PubMed ID: 31421384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill.
    Abunama T; Othman F; Ansari M; El-Shafie A
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches.
    Kannangara M; Dua R; Ahmadi L; Bensebaa F
    Waste Manag; 2018 Apr; 74():3-15. PubMed ID: 29221873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-model forecasting approach for solid waste generation by integrating demographic and socioeconomic factors: a case study of Prayagraj, India.
    Srivastava A; Jha PK
    Environ Monit Assess; 2023 May; 195(6):768. PubMed ID: 37249687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models.
    Intharathirat R; Abdul Salam P; Kumar S; Untong A
    Waste Manag; 2015 May; 39():3-14. PubMed ID: 25704925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of demand forecasting tool for natural resources recouping from municipal solid waste.
    Zaman AU; Lehmann S
    Waste Manag Res; 2013 Oct; 31(10 Suppl):17-25. PubMed ID: 23853239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of municipal waste generation of Turkey using socio-economic indicators by Bayesian optimization tuned Gaussian process regression.
    Ceylan Z
    Waste Manag Res; 2020 Aug; 38(8):840-850. PubMed ID: 32122291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review.
    Xu A; Chang H; Xu Y; Li R; Li X; Zhao Y
    Waste Manag; 2021 Apr; 124():385-402. PubMed ID: 33662770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.