These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 26573766)
1. Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis. Kröninger L; Berger S; Welte C; Deppenmeier U FEBS J; 2016 Feb; 283(3):472-83. PubMed ID: 26573766 [TBL] [Abstract][Full Text] [Related]
2. Energy conservation in the gut microbe Methanomassiliicoccus luminyensis is based on membrane-bound ferredoxin oxidation coupled to heterodisulfide reduction. Kröninger L; Steiniger F; Berger S; Kraus S; Welte CU; Deppenmeier U FEBS J; 2019 Oct; 286(19):3831-3843. PubMed ID: 31162794 [TBL] [Abstract][Full Text] [Related]
3. Electron Bifurcation and Confurcation in Methanogenesis and Reverse Methanogenesis. Yan Z; Ferry JG Front Microbiol; 2018; 9():1322. PubMed ID: 29973922 [TBL] [Abstract][Full Text] [Related]
4. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Buckel W; Thauer RK Biochim Biophys Acta; 2013 Feb; 1827(2):94-113. PubMed ID: 22800682 [TBL] [Abstract][Full Text] [Related]
5. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Kaster AK; Moll J; Parey K; Thauer RK Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2981-6. PubMed ID: 21262829 [TBL] [Abstract][Full Text] [Related]
6. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea. Yan Z; Wang M; Ferry JG mBio; 2017 Feb; 8(1):. PubMed ID: 28174314 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a CO: heterodisulfide oxidoreductase system from acetate-grown Methanosarcina thermophila. Peer CW; Painter MH; Rasche ME; Ferry JG J Bacteriol; 1994 Nov; 176(22):6974-9. PubMed ID: 7961460 [TBL] [Abstract][Full Text] [Related]
8. Bioenergetics of the formyl-methanofuran dehydrogenase and heterodisulfide reductase reactions in Methanothermobacter thermautotrophicus. de Poorter LM; Geerts WG; Theuvenet AP; Keltjens JT Eur J Biochem; 2003 Jan; 270(1):66-75. PubMed ID: 12492476 [TBL] [Abstract][Full Text] [Related]
9. Advanced electron paramagnetic resonance on the catalytic iron-sulfur cluster bound to the CCG domain of heterodisulfide reductase and succinate: quinone reductase. Fielding AJ; Parey K; Ermler U; Scheller S; Jaun B; Bennati M J Biol Inorg Chem; 2013 Dec; 18(8):905-15. PubMed ID: 24037219 [TBL] [Abstract][Full Text] [Related]
10. Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. Duin EC; Madadi-Kahkesh S; Hedderich R; Clay MD; Johnson MK FEBS Lett; 2002 Feb; 512(1-3):263-8. PubMed ID: 11852093 [TBL] [Abstract][Full Text] [Related]
12. Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. Heiden S; Hedderich R; Setzke E; Thauer RK Eur J Biochem; 1993 Apr; 213(1):529-35. PubMed ID: 8477725 [TBL] [Abstract][Full Text] [Related]
13. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Costa KC; Wong PM; Wang T; Lie TJ; Dodsworth JA; Swanson I; Burn JA; Hackett M; Leigh JA Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11050-5. PubMed ID: 20534465 [TBL] [Abstract][Full Text] [Related]
14. Novel reactions involved in energy conservation by methanogenic archaea. Deppenmeier U; Lienard T; Gottschalk G FEBS Lett; 1999 Sep; 457(3):291-7. PubMed ID: 10471795 [TBL] [Abstract][Full Text] [Related]
15. Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments. Ide T; Bäumer S; Deppenmeier U J Bacteriol; 1999 Jul; 181(13):4076-80. PubMed ID: 10383977 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of membrane-bound electron transport of the methanogenic archaeon Methanosarcina mazei Gö1 by diphenyleneiodonium. Brodersen J; Bäumer S; Abken HJ; Gottschalk G; Deppenmeier U Eur J Biochem; 1999 Jan; 259(1-2):218-24. PubMed ID: 9914496 [TBL] [Abstract][Full Text] [Related]
17. Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase. Buan NR; Metcalf WW Mol Microbiol; 2010 Feb; 75(4):843-53. PubMed ID: 19968794 [TBL] [Abstract][Full Text] [Related]
18. Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis. Stojanowic A; Mander GJ; Duin EC; Hedderich R Arch Microbiol; 2003 Sep; 180(3):194-203. PubMed ID: 12856108 [TBL] [Abstract][Full Text] [Related]
19. A cysteine-rich CCG domain contains a novel [4Fe-4S] cluster binding motif as deduced from studies with subunit B of heterodisulfide reductase from Methanothermobacter marburgensis. Hamann N; Mander GJ; Shokes JE; Scott RA; Bennati M; Hedderich R Biochemistry; 2007 Nov; 46(44):12875-85. PubMed ID: 17929940 [TBL] [Abstract][Full Text] [Related]