BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26573961)

  • 1. A sensitive fluorescence method for detection of E. Coli using rhodamine 6G dyeing.
    Wang Y; Jiang C; Wen G; Zhang X; Luo Y; Qin A; Liang A; Jiang Z
    Luminescence; 2016 Jun; 31(4):972-7. PubMed ID: 26573961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent identification and detection of Staphylococcus aureus with carboxymethyl chitosan/CdS quantum dots bioconjugates.
    Wang X; Du Y; Li Y; Li D; Sun R
    J Biomater Sci Polym Ed; 2011; 22(14):1881-93. PubMed ID: 20961493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic resonance scattering spectral determination of ultratrace horseradish peroxidase using rhodamine S.
    Jiang Z; Liang Y; Huang G; Wei X; Liang A; Zhong F
    Luminescence; 2009; 24(3):144-9. PubMed ID: 19291809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria.
    Xue X; Pan J; Xie H; Wang J; Zhang S
    Talanta; 2009 Mar; 77(5):1808-13. PubMed ID: 19159803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of quinoline derivatives for fluorescent imaging certain bacteria.
    Dhanapal R; Perumal PT; Damodiran M; Ramprasath C; Mathivanan N
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6494-7. PubMed ID: 22967764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fluorescence quenching assay of ultratrace horseradish peroxidase using rhodamine dye].
    Ma WS; Huang GX; Liang AH; Jiang ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):759-61. PubMed ID: 19455817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A functionalized gold nanoparticles and Rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples.
    Chen J; Zheng A; Chen A; Gao Y; He C; Kai X; Wu G; Chen Y
    Anal Chim Acta; 2007 Sep; 599(1):134-42. PubMed ID: 17765073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel "off-on" colorimetric and fluorescent rhodamine-based pH chemosensor for extreme acidity.
    Tan JL; Zhang MX; Zhang F; Yang TT; Liu Y; Li ZB; Zuo H
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():489-94. PubMed ID: 25638432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.
    Tan JL; Yang TT; Liu Y; Zhang X; Cheng SJ; Zuo H; He H
    Luminescence; 2016 May; 31(3):865-70. PubMed ID: 26467547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay.
    Barizuddin S; Balakrishnan B; Stringer RC; Dweik M
    J Microbiol Methods; 2015 Aug; 115():27-33. PubMed ID: 26003438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductometric sensor for viable Escherichia coli and Staphylococcus aureus based on magnetic analyte separation via aptamer.
    Zhang X; Wang X; Yang Q; Jiang X; Li Y; Zhao J; Qu K
    Mikrochim Acta; 2019 Dec; 187(1):43. PubMed ID: 31832780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule.
    Jiang G; Wang J; Yang Y; Zhang G; Liu Y; Lin H; Zhang G; Li Y; Fan X
    Biosens Bioelectron; 2016 Nov; 85():62-67. PubMed ID: 27155117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A magneto-fluorescence bacteria assay strategy based on dual colour sulfide fluorescent nanoparticles with high near-IR conversion efficiency.
    Zhu Y; Wang J; Sun Y; Cai Q
    Analyst; 2020 Jul; 145(13):4436-4441. PubMed ID: 32469359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic scale-up of a novel fluorescent probe and its biological evaluation for surface detection of Staphylococcus aureus.
    Bywaters L; Mulcahy-Ryan L; Fielder M; Sinclair A; Le Gresley A
    Mol Cell Probes; 2017 Dec; 36():1-9. PubMed ID: 28668278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs.
    Guo X; Li D; Lu W; Piao X; Chen X
    Antonie Van Leeuwenhoek; 2006 Aug; 90(2):139-46. PubMed ID: 16820971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorimetric detection of pathogenic bacteria using magnetic carbon dots.
    Bhaisare ML; Gedda G; Khan MS; Wu HF
    Anal Chim Acta; 2016 May; 920():63-71. PubMed ID: 27114224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and rapid detection of bacteria using a nuclease-responsive DNA probe.
    Lee KJ; Lee WS; Hwang A; Moon J; Kang T; Park K; Jeong J
    Analyst; 2017 Dec; 143(1):332-338. PubMed ID: 29210381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Resonance-scattering spectral determination of H2O2 using rhodamine 6G association particles].
    Li ZZ; Jiang ZL; Yang G; Lu D; Liu SP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1286-8. PubMed ID: 16329502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of the interaction between rhodamine 6g and hydroxy propyl β-cyclodextrin by steady state fluorescence.
    Bakkialakshmi S; Menaka T
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):8-13. PubMed ID: 21724451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid separations of nile blue stained microorganisms as cationic charged species by chip-CE with LIF.
    Nuchtavorn N; Bek F; Macka M; Suntornsuk W; Suntornsuk L
    Electrophoresis; 2012 May; 33(9-10):1421-6. PubMed ID: 22648810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.