These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26574219)

  • 1. Finite-size effect on the charging free energy of protein in explicit solvent.
    Ekimoto T; Matubayasi N; Ikeguchi M
    J Chem Theory Comput; 2015 Jan; 11(1):215-23. PubMed ID: 26574219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.
    Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH
    J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explicit Solvent Hydration Benchmark for Proteins with Application to the PBSA Method.
    Setny P; Dudek A
    J Chem Theory Comput; 2017 Jun; 13(6):2762-2776. PubMed ID: 28498675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in implicit models of water solvent to compute conformational free energy and molecular dynamics of proteins at constant pH.
    Vorobjev YN
    Adv Protein Chem Struct Biol; 2011; 85():281-322. PubMed ID: 21920327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating the excluded solvent volume and surface charges for computing solvation free energy.
    Yang PK
    J Comput Chem; 2014 Jan; 35(1):62-9. PubMed ID: 24129882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of Finite-Size Effects on Binding Free Energies via the Warp-Drive Method.
    Ekimoto T; Yamane T; Ikeguchi M
    J Chem Theory Comput; 2018 Dec; 14(12):6544-6559. PubMed ID: 30404450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.
    Simões IC; Costa IP; Coimbra JT; Ramos MJ; Fernandes PA
    J Chem Inf Model; 2017 Jan; 57(1):60-72. PubMed ID: 27936711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model.
    Vorobjev YN; Hermans J
    Biophys Chem; 1999 Apr; 78(1-2):195-205. PubMed ID: 10343388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
    Izadi S; Aguilar B; Onufriev AV
    J Chem Theory Comput; 2015 Sep; 11(9):4450-9. PubMed ID: 26575935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication: Free-energy analysis of hydration effect on protein with explicit solvent: equilibrium fluctuation of cytochrome c.
    Karino Y; Matubayasi N
    J Chem Phys; 2011 Jan; 134(4):041105. PubMed ID: 21280680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations.
    Lee MS; Olson MA
    J Chem Phys; 2013 Jul; 139(4):044119. PubMed ID: 23901972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategy using three layers of surface charge for computing solvation free energy of ions.
    Yang PK
    Biophys Chem; 2013 Dec; 184():87-94. PubMed ID: 24157373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models.
    Olson MA
    Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified Poisson equations for calculating solvation free energy.
    Yang PK
    Biophys Chem; 2017 Feb; 221():26-40. PubMed ID: 27951444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate calculation of conformational free energy differences in explicit water: the confinement-solvation free energy approach.
    Esque J; Cecchini M
    J Phys Chem B; 2015 Apr; 119(16):5194-207. PubMed ID: 25807150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.