These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26574222)

  • 1. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).
    Migani A; Mowbray DJ; Zhao J; Petek H
    J Chem Theory Comput; 2015 Jan; 11(1):239-51. PubMed ID: 26574222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasiparticle Level Alignment for Photocatalytic Interfaces.
    Migani A; Mowbray DJ; Zhao J; Petek H; Rubio A
    J Chem Theory Comput; 2014 May; 10(5):2103-13. PubMed ID: 26580537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Level alignment of a prototypical photocatalytic system: methanol on TiO2(110).
    Migani A; Mowbray DJ; Iacomino A; Zhao J; Petek H; Rubio A
    J Am Chem Soc; 2013 Aug; 135(31):11429-32. PubMed ID: 23865780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical prediction of the band offsets at the ZnO/anatase TiO2 and GaN/ZnO heterojunctions using the self-consistent ab initio DFT/GGA-1/2 method.
    Fang DQ; Zhang SL
    J Chem Phys; 2016 Jan; 144(1):014704. PubMed ID: 26747815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, stability and water adsorption on ultra-thin TiO
    Gutiérrez Moreno JJ; Fronzi M; Lovera P; O'Riordan A; Ford MJ; Li W; Nolan M
    Phys Chem Chem Phys; 2019 Dec; 21(45):25344-25361. PubMed ID: 31701962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The surface states and the electron-hole pair recombination of TiO2 nanopowders].
    Liu BS; He X; Zhao XJ; Zhao QN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):208-12. PubMed ID: 16826888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab Initio Study of the Atomic Level Structure of the Rutile TiO
    Gutiérrez Moreno JJ; Nolan M
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):38089-38100. PubMed ID: 28937740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparisons of multilayer H2O adsorption onto the (110) surfaces of alpha-TiO2 and SnO2 as calculated with density functional theory.
    Bandura AV; Kubicki JD; Sofo JO
    J Phys Chem B; 2008 Sep; 112(37):11616-24. PubMed ID: 18712914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of H
    Zhou H; Zhang H; Yuan S
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoemission, resonant photoemission, and x-ray absorption of a Ru(II) complex adsorbed on rutile TiO2(110) prepared by in situ electrospray deposition.
    Mayor LC; Ben Taylor J; Magnano G; Rienzo A; Satterley CJ; O'Shea JN; Schnadt J
    J Chem Phys; 2008 Sep; 129(11):114701. PubMed ID: 19044974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acidity of the Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics.
    Cheng J; Sprik M
    J Chem Theory Comput; 2010 Mar; 6(3):880-9. PubMed ID: 26613315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the atomic structure and dissociation of interfacial water on anatase TiO
    Yang L; Huang M; Feng N; Wang M; Xu J; Jiang Y; Ma D; Deng F
    Chem Sci; 2024 Jul; 15(30):11902-11911. PubMed ID: 39092109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Interaction of Titania Nanoparticles and Ligated Uranyl Species: A Relativistic DFT Investigation.
    Zhao HB; Zheng M; Schreckenbach G; Pan QJ
    Inorg Chem; 2017 Mar; 56(5):2763-2776. PubMed ID: 28195715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic properties of the interface between p-CuI and anatase-phase n-TiO2 single crystal and nanoparticulate surfaces: a photoemission study.
    Kumarasinghe AR; Flavell WR; Thomas AG; Mallick AK; Tsoutsou D; Chatwin C; Rayner S; Kirkham P; Warren S; Patel S; Christian P; O'Brien P; Grätzel M; Hengerer R
    J Chem Phys; 2007 Sep; 127(11):114703. PubMed ID: 17887866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing TiO2(110) surface states by their work function.
    Borodin A; Reichling M
    Phys Chem Chem Phys; 2011 Sep; 13(34):15442-7. PubMed ID: 21779605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet electrons at the H2O/TiO2(110) surface.
    Onda K; Li B; Zhao J; Jordan KD; Yang J; Petek H
    Science; 2005 May; 308(5725):1154-8. PubMed ID: 15905397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspective: A controversial benchmark system for water-oxide interfaces: H
    Diebold U
    J Chem Phys; 2017 Jul; 147(4):040901. PubMed ID: 28764365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.