These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26574246)

  • 41. Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods.
    Andrade X; Aspuru-Guzik A
    J Chem Theory Comput; 2013 Oct; 9(10):4360-73. PubMed ID: 26589153
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A minimal implementation of the AMBER-GAUSSIAN interface for ab initio QM/MM-MD simulation.
    Okamoto T; Yamada K; Koyano Y; Asada T; Koga N; Nagaoka M
    J Comput Chem; 2011 Apr; 32(5):932-42. PubMed ID: 20949515
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Algorithms for GPU-based molecular dynamics simulations of complex fluids: Applications to water, mixtures, and liquid crystals.
    Kazachenko S; Giovinazzo M; Hall KW; Cann NM
    J Comput Chem; 2015 Sep; 36(24):1787-804. PubMed ID: 26174435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enabling ab initio Hessian and frequency calculations of large molecules.
    Rahalkar AP; Ganesh V; Gadre SR
    J Chem Phys; 2008 Dec; 129(23):234101. PubMed ID: 19102520
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MDLab: a molecular dynamics simulation prototyping environment.
    Cickovski T; Chatterjee S; Wenger J; Sweet CR; Izaguirre JA
    J Comput Chem; 2010 May; 31(7):1345-56. PubMed ID: 19882726
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantum supercharger library: hyper-parallelism of the Hartree-Fock method.
    Fernandes KD; Renison CA; Naidoo KJ
    J Comput Chem; 2015 Jul; 36(18):1399-409. PubMed ID: 25975763
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polyradical character and spin frustration in fullerene molecules: an ab initio non-collinear Hartree-Fock study.
    Jiménez-Hoyos CA; Rodríguez-Guzmán R; Scuseria GE
    J Phys Chem A; 2014 Oct; 118(42):9925-40. PubMed ID: 25254432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple time step integrators in ab initio molecular dynamics.
    Luehr N; Markland TE; Martínez TJ
    J Chem Phys; 2014 Feb; 140(8):084116. PubMed ID: 24588157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Communication: A reduced scaling J-engine based reformulation of SOS-MP2 using graphics processing units.
    Maurer SA; Kussmann J; Ochsenfeld C
    J Chem Phys; 2014 Aug; 141(5):051106. PubMed ID: 25106563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular dynamics simulation of liquid carbon tetrachloride using ab initio force field.
    Li AH; Huang SC; Chao SD
    J Chem Phys; 2010 Jan; 132(2):024506. PubMed ID: 20095686
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations.
    Schiffmann F; VandeVondele J
    J Chem Phys; 2015 Jun; 142(24):244117. PubMed ID: 26133420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. WebProp: Web interface for ab initio calculation of molecular one-electron properties.
    Ganesh V; Kavathekar R; Rahalkar A; Gadre SR
    J Comput Chem; 2008 Feb; 29(3):488-95. PubMed ID: 17654647
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function.
    Ohto T; Usui K; Hasegawa T; Bonn M; Nagata Y
    J Chem Phys; 2015 Sep; 143(12):124702. PubMed ID: 26429027
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ab initio energies of nonconducting crystals by systematic fragmentation.
    Netzloff HM; Collins MA
    J Chem Phys; 2007 Oct; 127(13):134113. PubMed ID: 17919017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.
    Harvey MJ; Giupponi G; Fabritiis GD
    J Chem Theory Comput; 2009 Jun; 5(6):1632-9. PubMed ID: 26609855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural modeling of Ge6.25As32.5Se61.25 using a combination of reverse Monte Carlo and Ab initio molecular dynamics.
    Opletal G; Drumm DW; Wang RP; Russo SP
    J Phys Chem A; 2014 Jul; 118(26):4790-6. PubMed ID: 24945733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drug Discovery and Molecular Dynamics: Methods, Applications and Perspective Beyond the Second Timescale.
    Martínez-Rosell G; Giorgino T; Harvey MJ; de Fabritiis G
    Curr Top Med Chem; 2017; 17(23):2617-2625. PubMed ID: 28413955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ab initio calculations for the Zn 2s and 2p core level binding energies in Zn oxo compounds and ZnO.
    Rössler N; Kotsis K; Staemmler V
    Phys Chem Chem Phys; 2006 Feb; 8(6):697-706. PubMed ID: 16482309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.