These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26574287)

  • 1. Free energy and hidden barriers of the β-sheet structure of prion protein.
    Paz SA; Abrams CF
    J Chem Theory Comput; 2015 Oct; 11(10):5024-34. PubMed ID: 26574287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intrinsic stability of the human prion β-sheet region investigated by molecular dynamics.
    De Simone A; Stanzione F; Marasco D; Vitagliano L; Esposito L
    J Biomol Struct Dyn; 2013; 31(5):441-52. PubMed ID: 22876967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics.
    Sun R; Sode O; Dama JF; Voth GA
    J Chem Theory Comput; 2017 May; 13(5):2332-2341. PubMed ID: 28345907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metadynamics simulation of prion protein: beta-structure stability and the early stages of misfolding.
    Barducci A; Chelli R; Procacci P; Schettino V; Gervasio FL; Parrinello M
    J Am Chem Soc; 2006 Mar; 128(8):2705-10. PubMed ID: 16492057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.
    Chamachi NG; Chakrabarty S
    J Phys Chem B; 2016 Aug; 120(30):7332-45. PubMed ID: 27390876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling.
    Zheng L; Chen M; Yang W
    J Chem Phys; 2009 Jun; 130(23):234105. PubMed ID: 19548709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal model for studying prion-like folding pathways.
    Chen JZ; Lemak AS; Lepock JR; Kemp JP
    Proteins; 2003 May; 51(2):283-8. PubMed ID: 12660996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics.
    Haldar S; Kührová P; Banáš P; Spiwok V; Šponer J; Hobza P; Otyepka M
    J Chem Theory Comput; 2015 Aug; 11(8):3866-77. PubMed ID: 26574468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition-Tempered Metadynamics Is a Promising Tool for Studying the Permeation of Drug-like Molecules through Membranes.
    Sun R; Dama JF; Tan JS; Rose JP; Voth GA
    J Chem Theory Comput; 2016 Oct; 12(10):5157-5169. PubMed ID: 27598403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replica state exchange metadynamics for improving the convergence of free energy estimates.
    Galvelis R; Sugita Y
    J Comput Chem; 2015 Jul; 36(19):1446-55. PubMed ID: 25990969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics.
    Bonomi M; Barducci A; Parrinello M
    J Comput Chem; 2009 Aug; 30(11):1615-21. PubMed ID: 19421997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the protein G helix free-energy surface by solute tempering metadynamics.
    Camilloni C; Provasi D; Tiana G; Broglia RA
    Proteins; 2008 Jun; 71(4):1647-54. PubMed ID: 18076039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic simulation of the mouse prion protein.
    Guilbert C; Ricard F; Smith JC
    Biopolymers; 2000 Nov; 54(6):406-15. PubMed ID: 10951327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing.
    Gupta A; Verma S; Javed R; Sudhakar S; Srivastava S; Nair NN
    J Comput Chem; 2022 Jun; 43(17):1186-1200. PubMed ID: 35510789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot spot of structural ambivalence in prion protein revealed by secondary structure principal component analysis.
    Yamamoto N
    J Phys Chem B; 2014 Aug; 118(33):9826-33. PubMed ID: 25101991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed Monte Carlo/Molecular Dynamics simulations of the prion protein.
    Ribeiro AA; de Alencastro RB
    J Mol Graph Model; 2013 May; 42():1-6. PubMed ID: 23501158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient free energy calculations by combining two complementary tempering sampling methods.
    Xie L; Shen L; Chen ZN; Yang M
    J Chem Phys; 2017 Jan; 146(2):024103. PubMed ID: 28088161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metadynamics as a tool for mapping the conformational and free-energy space of peptides--the alanine dipeptide case study.
    Vymetal J; Vondrásek J
    J Phys Chem B; 2010 Apr; 114(16):5632-42. PubMed ID: 20361773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins.
    Zhang J; Zhang Y
    J Theor Biol; 2014 Feb; 342():70-82. PubMed ID: 24184221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.