These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26574376)

  • 1. First-Principles Investigation of Strong Excitonic Effects in Oxygen 1s X-ray Absorption Spectra.
    Noguchi Y; Hiyama M; Akiyama H; Harada Y; Koga N
    J Chem Theory Comput; 2015 Apr; 11(4):1668-73. PubMed ID: 26574376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GW+Bethe-Salpeter calculation on photoabsorption spectra of (CdSe)3 and (CdSe)6 clusters.
    Noguchi Y; Sugino O; Nagaoka M; Ishii S; Ohno K
    J Chem Phys; 2012 Jul; 137(2):024306. PubMed ID: 22803535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles investigation on Rydberg and resonance excitations: A case study of the firefly luciferin anion.
    Noguchi Y; Hiyama M; Akiyama H; Koga N
    J Chem Phys; 2014 Jul; 141(4):044309. PubMed ID: 25084912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-edge structures from first principles all-electron Bethe-Salpeter equation calculations.
    Olovsson W; Tanaka I; Puschnig P; Ambrosch-Draxl C
    J Phys Condens Matter; 2009 Mar; 21(10):104205. PubMed ID: 21817425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide.
    Faber C; Boulanger P; Duchemin I; Attaccalite C; Blase X
    J Chem Phys; 2013 Nov; 139(19):194308. PubMed ID: 24320327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic excitations of bulk LiCl from many-body perturbation theory.
    Jiang YF; Wang NP; Rohlfing M
    J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment.
    Xie RH; Bryant GW; Sun G; Nicklaus MC; Heringer D; Frauenheim T; Manaa MR; Smith VH; Araki Y; Ito O
    J Chem Phys; 2004 Mar; 120(11):5133-47. PubMed ID: 15267383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell excitation of isoxazole at the C, N, and O K-edges - an experimental NEXAFS and theoretical TD-DFT study.
    Wasowicz TJ; Ljubić I; Kivimäki A; Richter R
    Phys Chem Chem Phys; 2022 Aug; 24(32):19302-19313. PubMed ID: 35929445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: strong excitonic and vibronic effects determine the optical properties of Li2O2.
    Garcia-Lastra JM; Bass JD; Thygesen KS
    J Chem Phys; 2011 Sep; 135(12):121101. PubMed ID: 21974504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One- and two-particle effects in the electronic and optical spectra of barium fluoride.
    Cadelano E; Furthmüller J; Cappellini G; Bechstedt F
    J Phys Condens Matter; 2014 Mar; 26(12):125501. PubMed ID: 24594731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitonic effects and optical properties of passivated CdSe clusters.
    del Puerto ML; Tiago ML; Chelikowsky JR
    Phys Rev Lett; 2006 Sep; 97(9):096401. PubMed ID: 17026380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations.
    Webster R; Bernasconi L; Harrison NM
    J Chem Phys; 2015 Jun; 142(21):214705. PubMed ID: 26049514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate effect on excitonic shift and radiative lifetime of two-dimensional materials.
    Guo C; Xu J; Ping Y
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33647889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High accuracy many-body calculational approaches for excitations in molecules.
    Grossman JC; Rohlfing M; Mitas L; Louie SG; Cohen ML
    Phys Rev Lett; 2001 Jan; 86(3):472-5. PubMed ID: 11177858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear optical response of LiNbO3 calculated from first principles.
    Riefer A; Sanna S; Gavrilenko AV; Schmidt WG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):1929-33. PubMed ID: 23007763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excited state properties, fluorescence energies, and lifetimes of a poly(fluorene-phenylene), based on TD-DFT investigation.
    Chidthong R; Hannongbua S
    J Comput Chem; 2010 May; 31(7):1450-7. PubMed ID: 19862813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of charge transfer excitations in hexacyanomanganate(III) with Mn K-edge resonant inelastic x-ray scattering.
    Meyer DA; Zhang X; Bergmann U; Gaffney KJ
    J Chem Phys; 2010 Apr; 132(13):134502. PubMed ID: 20387936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and theoretical comparison of the O K-edge nonresonant inelastic X-ray scattering and X-ray absorption spectra of NaReO4.
    Bradley JA; Yang P; Batista ER; Boland KS; Burns CJ; Clark DL; Conradson SD; Kozimor SA; Martin RL; Seidler GT; Scott BL; Shuh DK; Tyliszczak T; Wilkerson MP; Wolfsberg LE
    J Am Chem Soc; 2010 Oct; 132(39):13914-21. PubMed ID: 20839792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism.
    Gui X; Holzer C; Klopper W
    J Chem Theory Comput; 2018 Apr; 14(4):2127-2136. PubMed ID: 29499116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrical and optical benchmarking of copper guanidine-quinoline complexes: insights from TD-DFT and many-body perturbation theory.
    Jesser A; Rohrmüller M; Schmidt WG; Herres-Pawlis S
    J Comput Chem; 2014 Jan; 35(1):1-17. PubMed ID: 24122864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.