BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26574406)

  • 1. Analysis of Different Fragmentation Strategies on a Variety of Large Peptides: Implementation of a Low Level of Theory in Fragment-Based Methods Can Be a Crucial Factor.
    Saha A; Raghavachari K
    J Chem Theory Comput; 2015 May; 11(5):2012-23. PubMed ID: 26574406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of density functionals with long-range and/or empirical dispersion corrections for conformational energy calculations of peptides.
    Kang YK; Byun BJ
    J Comput Chem; 2010 Dec; 31(16):2915-23. PubMed ID: 20564333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves.
    Ess DH; Cook TC
    J Phys Chem A; 2012 May; 116(20):4922-9. PubMed ID: 22578025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment-Based Approaches for Supramolecular Interaction Energies: Applications to Foldamers and Their Complexes with Anions.
    Debnath S; Sengupta A; Jose KVJ; Raghavachari K
    J Chem Theory Comput; 2018 Dec; 14(12):6226-6239. PubMed ID: 30484639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach.
    Thapa B; Beckett D; Jovan Jose KV; Raghavachari K
    J Chem Theory Comput; 2018 Mar; 14(3):1383-1394. PubMed ID: 29450992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers.
    Dahlke EE; Olson RM; Leverentz HR; Truhlar DG
    J Phys Chem A; 2008 May; 112(17):3976-84. PubMed ID: 18393474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-phase folding of a two-residue model peptide chain: on the importance of an interplay between experiment and theory.
    Gloaguen E; de Courcy B; Piquemal JP; Pilmé J; Parisel O; Pollet R; Biswal HS; Piuzzi F; Tardivel B; Broquier M; Mons M
    J Am Chem Soc; 2010 Sep; 132(34):11860-3. PubMed ID: 20687601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperativity in long α- and 3(10)-helical polyalanines: both electrostatic and van der Waals interactions are essential.
    Hua S; Xu L; Li W; Li S
    J Phys Chem B; 2011 Oct; 115(39):11462-9. PubMed ID: 21859141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies.
    Jacquemin D; Perpète EA; Ciofini I; Adamo C; Valero R; Zhao Y; Truhlar DG
    J Chem Theory Comput; 2010 Jul; 6(7):2071-85. PubMed ID: 26615935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules.
    Li S; Li W; Fang T
    J Am Chem Soc; 2005 May; 127(19):7215-26. PubMed ID: 15884963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical aspects of hydrolysis of peptide bonds by zinc metalloenzymes.
    Navrátil V; Klusák V; Rulíšek L
    Chemistry; 2013 Dec; 19(49):16634-45. PubMed ID: 24194391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Post-Hartree-Fock Accuracy for Protein-Ligand Affinities Using the Molecules-in-Molecules Fragmentation-Based Method.
    Gupta AK; Maier S; Thapa B; Raghavachari K
    J Chem Theory Comput; 2024 Apr; 20(7):2774-2785. PubMed ID: 38530869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking of Density Functionals for the Accurate Description of Thiol-Disulfide Exchange.
    Neves RP; Fernandes PA; Varandas AJ; Ramos MJ
    J Chem Theory Comput; 2014 Nov; 10(11):4842-56. PubMed ID: 26584371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the standard enthalpy of formation of iodine compounds through the G2 and G3(MP2)//B3-SBK theories.
    Leal RC; Marinho YBD; de Andrade MAM; da Luz Sousa I
    J Mol Model; 2022 Aug; 28(9):246. PubMed ID: 35927532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.