BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26574418)

  • 1. Reactive Force Field Study of Li/C Systems for Electrical Energy Storage.
    Raju M; Ganesh P; Kent PR; van Duin AC
    J Chem Theory Comput; 2015 May; 11(5):2156-66. PubMed ID: 26574418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of density functionals for the description of lithium-graphite intercalation compounds.
    Lenchuk O; Adelhelm P; Mollenhauer D
    J Comput Chem; 2019 Oct; 40(27):2400-2412. PubMed ID: 31254474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries.
    De Souza LA; Monteiro de Castro G; Marques LF; Belchior JC
    J Mol Graph Model; 2021 Nov; 108():107998. PubMed ID: 34371459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles analysis of defect-mediated Li adsorption on graphene.
    Yildirim H; Kinaci A; Zhao ZJ; Chan MK; Greeley JP
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21141-50. PubMed ID: 25394787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO2/Al2O3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling.
    Ostadhossein A; Kim SY; Cubuk ED; Qi Y; van Duin AC
    J Phys Chem A; 2016 Apr; 120(13):2114-27. PubMed ID: 26978039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics and kinetics of li intercalation in irradiated graphene scaffolds.
    Song J; Ouyang B; Medhekar NV
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12968-74. PubMed ID: 24256350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries.
    Ramos-Sanchez G; Callejas-Tovar A; Scanlon LG; Balbuena PB
    Phys Chem Chem Phys; 2014 Jan; 16(2):743-52. PubMed ID: 24270502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.
    Fan X; Zheng WT; Kuo JL; Singh DJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7793-7. PubMed ID: 23863039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization and application of lithium parameters for the reactive force field, ReaxFF.
    Han SS; van Duin AC; Goddard WA; Lee HM
    J Phys Chem A; 2005 May; 109(20):4575-82. PubMed ID: 16833794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-carbon-based porous topological semimetal for Li-ion battery anode material.
    Liu J; Wang S; Sun Q
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):651-656. PubMed ID: 28069940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures.
    Fujikake S; Deringer VL; Lee TH; Krynski M; Elliott SR; Csányi G
    J Chem Phys; 2018 Jun; 148(24):241714. PubMed ID: 29960342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium-electrolyte solvation and reaction in the electrolyte of a lithium ion battery: A ReaxFF reactive force field study.
    Hossain MJ; Pawar G; Liaw B; Gering KL; Dufek EJ; van Duin ACT
    J Chem Phys; 2020 May; 152(18):184301. PubMed ID: 32414258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Machine Learning-Enabled Potential Energy Model for Atomistic Simulation of Lithium Intercalation into Graphite from Plating to Overlithiation.
    Yang PY; Chiang YH; Pao CW; Chang CC
    J Chem Theory Comput; 2023 Jul; 19(14):4533-4545. PubMed ID: 37140982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects.
    Zhang R; Wu X; Yang J
    Nanoscale; 2016 Feb; 8(7):4001-6. PubMed ID: 26817578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cooperative biphasic MoO
    Lee SM; Kim J; Moon J; Jung KN; Kim JH; Park GJ; Choi JH; Rhee DY; Kim JS; Lee JW; Park MS
    Nat Commun; 2021 Jan; 12(1):39. PubMed ID: 33397916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexagonal BC3: A Robust Electrode Material for Li, Na, and K Ion Batteries.
    Joshi RP; Ozdemir B; Barone V; Peralta JE
    J Phys Chem Lett; 2015 Jul; 6(14):2728-32. PubMed ID: 26266854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accessing Structural, Electronic, Transport and Mesoscale Properties of Li-GICs via a Complete DFTB Model with Machine-Learned Repulsion Potential.
    Anniés S; Panosetti C; Voronenko M; Mauth D; Rahe C; Scheurer C
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.