These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26574426)

  • 21. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif.
    Orzáez M; Lukovic D; Abad C; Pérez-Payá E; Mingarro I
    FEBS Lett; 2005 Mar; 579(7):1633-8. PubMed ID: 15757653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers.
    Periole X; Huber T; Marrink SJ; Sakmar TP
    J Am Chem Soc; 2007 Aug; 129(33):10126-32. PubMed ID: 17658882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in apparent free energy of helix-helix dimerization in a biological membrane due to point mutations.
    Duong MT; Jaszewski TM; Fleming KG; MacKenzie KR
    J Mol Biol; 2007 Aug; 371(2):422-34. PubMed ID: 17570394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic molecular dynamics searching in a lipid bilayer: application to the glycophorin A and oncogenic ErbB-2 transmembrane domains.
    Beevers AJ; Kukol A
    J Mol Graph Model; 2006 Oct; 25(2):226-33. PubMed ID: 16434222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Modeling of peptides and proteins in a membrane environment.II. Structural and energetic aspects of Glycophorin A in a lipid bilayer].
    Volynskiĭ PE; Nol'de DE; Arsen'ev AS; Efremov RG
    Bioorg Khim; 2000 Mar; 26(3):163-72. PubMed ID: 10816813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers.
    Periole X; Knepp AM; Sakmar TP; Marrink SJ; Huber T
    J Am Chem Soc; 2012 Jul; 134(26):10959-65. PubMed ID: 22679925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The orientation and stability of the GPCR-Arrestin complex in a lipid bilayer.
    Wang D; Yu H; Liu X; Liu J; Song C
    Sci Rep; 2017 Dec; 7(1):16985. PubMed ID: 29209002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Balancing Force Field Protein-Lipid Interactions To Capture Transmembrane Helix-Helix Association.
    Domański J; Sansom MSP; Stansfeld PJ; Best RB
    J Chem Theory Comput; 2018 Mar; 14(3):1706-1715. PubMed ID: 29424543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations.
    Kandasamy SK; Larson RG
    Chem Phys Lipids; 2004 Nov; 132(1):113-32. PubMed ID: 15530453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers.
    Cordomí A; Perez JJ
    J Phys Chem B; 2007 Jun; 111(25):7052-63. PubMed ID: 17530884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coarse-grained molecular dynamics provides insight into the interactions of lipids and cholesterol with rhodopsin.
    Horn JN; Kao TC; Grossfield A
    Adv Exp Med Biol; 2014; 796():75-94. PubMed ID: 24158802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic models of G-protein coupled receptor dimers: indications of asymmetry in the rhodopsin dimer from molecular dynamics simulations in a POPC bilayer.
    Filizola M; Wang SX; Weinstein H
    J Comput Aided Mol Des; 2006; 20(7-8):405-16. PubMed ID: 17089205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free-energy landscapes of transmembrane homodimers by bias-exchange adaptively biased molecular dynamics.
    Ito S; Sugita Y
    Biophys Chem; 2024 Apr; 307():107190. PubMed ID: 38290241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid-protein interactions of integral membrane proteins: a comparative simulation study.
    Deol SS; Bond PJ; Domene C; Sansom MS
    Biophys J; 2004 Dec; 87(6):3737-49. PubMed ID: 15465855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing the binding of annexin V to a lipid bilayer using molecular dynamics simulations.
    Chen Z; Mao Y; Yang J; Zhang T; Zhao L; Yu K; Zheng M; Jiang H; Yang H
    Proteins; 2014 Feb; 82(2):312-22. PubMed ID: 23934928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment.
    Johnson RM; Hecht K; Deber CM
    Biochemistry; 2007 Aug; 46(32):9208-14. PubMed ID: 17658897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane proteins: molecular dynamics simulations.
    Lindahl E; Sansom MS
    Curr Opin Struct Biol; 2008 Aug; 18(4):425-31. PubMed ID: 18406600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers.
    Castro-Román F; Benz RW; White SH; Tobias DJ
    J Phys Chem B; 2006 Nov; 110(47):24157-64. PubMed ID: 17125387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of energy values to the analysis of global searching molecular dynamics simulations of transmembrane helical bundles.
    Torres J; Briggs JA; Arkin IT
    Biophys J; 2002 Jun; 82(6):3063-71. PubMed ID: 12023229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.