BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

685 related articles for article (PubMed ID: 26574513)

  • 1. Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti.
    Schäper S; Krol E; Skotnicka D; Kaever V; Hilker R; Søgaard-Andersen L; Becker A
    J Bacteriol; 2016 Feb; 198(3):521-35. PubMed ID: 26574513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bifunctional UDP-Sugar 4-Epimerase Supports Biosynthesis of Multiple Cell Surface Polysaccharides in Sinorhizobium meliloti.
    Schäper S; Wendt H; Bamberger J; Sieber V; Schmid J; Becker A
    J Bacteriol; 2019 May; 201(10):. PubMed ID: 30833352
    [No Abstract]   [Full Text] [Related]  

  • 3. Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti.
    Barnett MJ; Long SR
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29158240
    [No Abstract]   [Full Text] [Related]  

  • 4. AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production.
    Schäper S; Steinchen W; Krol E; Altegoer F; Skotnicka D; Søgaard-Andersen L; Bange G; Becker A
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):E4822-E4831. PubMed ID: 28559336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. More than Enzymes That Make or Break Cyclic Di-GMP-Local Signaling in the Interactome of GGDEF/EAL Domain Proteins of
    Sarenko O; Klauck G; Wilke FM; Pfiffer V; Richter AM; Herbst S; Kaever V; Hengge R
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatically active and inactive phosphodiesterases and diguanylate cyclases are involved in regulation of Motility or sessility in Escherichia coli CFT073.
    Spurbeck RR; Tarrien RJ; Mobley HL
    mBio; 2012 Oct; 3(5):. PubMed ID: 23047748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The
    Chávez-Jacobo VM; Becerra-Rivera VA; Guerrero G; Dunn MF
    Microbiology (Reading); 2023 Jan; 169(1):. PubMed ID: 36748569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Transcriptional Repression of Diguanylate Cyclases by MucR1 Is Essential for
    Li ML; Jiao J; Zhang B; Shi WT; Yu WH; Tian CF
    mBio; 2021 Oct; 12(5):e0119221. PubMed ID: 34700374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic Di-GMP Signaling Contributes to Pseudomonas aeruginosa-Mediated Catheter-Associated Urinary Tract Infection.
    Cole SJ; Lee VT
    J Bacteriol; 2016 Jan; 198(1):91-7. PubMed ID: 26195591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli.
    Gao S; Romdhane SB; Beullens S; Kaever V; Lambrichts I; Fauvart M; Michiels J
    Appl Microbiol Biotechnol; 2014 May; 98(10):4589-602. PubMed ID: 24728599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.
    Moreira RN; Dressaire C; Barahona S; Galego L; Kaever V; Jenal U; Arraiano CM
    mBio; 2017 Sep; 8(5):. PubMed ID: 28928205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase.
    Plumley BA; Martin KH; Borlee GI; Marlenee NL; Burtnick MN; Brett PJ; AuCoin DP; Bowen RA; Schweizer HP; Borlee BR
    J Bacteriol; 2017 Mar; 199(5):. PubMed ID: 27956524
    [No Abstract]   [Full Text] [Related]  

  • 13. Cyclic Di-GMP Regulates Type IV Pilus-Dependent Motility in Myxococcus xanthus.
    Skotnicka D; Petters T; Heering J; Hoppert M; Kaever V; Søgaard-Andersen L
    J Bacteriol; 2016 Jan; 198(1):77-90. PubMed ID: 26124238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Para-Aminobenzoic Acid, Calcium, and c-di-GMP Induce Formation of Cohesive, Syp-Polysaccharide-Dependent Biofilms in Vibrio fischeri.
    Dial CN; Speare L; Sharpe GC; Gifford SM; Septer AN; Visick KL
    mBio; 2021 Oct; 12(5):e0203421. PubMed ID: 34607467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation.
    Rinaudi LV; González JE
    J Bacteriol; 2009 Dec; 191(23):7216-24. PubMed ID: 19783627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic di-GMP signaling controlling the free-living lifestyle of alpha-proteobacterial rhizobia.
    Krol E; Schäper S; Becker A
    Biol Chem; 2020 Nov; 401(12):1335-1348. PubMed ID: 32990642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility.
    Amaya-Gómez CV; Hirsch AM; Soto MJ
    BMC Microbiol; 2015 Mar; 15():58. PubMed ID: 25887945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes.
    Matilla MA; Travieso ML; Ramos JL; Ramos-González MI
    Environ Microbiol; 2011 Jul; 13(7):1745-66. PubMed ID: 21554519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GGDEF and EAL proteins play different roles in the control of Sinorhizobium meliloti growth, motility, exopolysaccharide production, and competitive nodulation on host alfalfa.
    Wang Y; Xu J; Chen A; Wang Y; Zhu J; Yu G; Xu L; Luo L
    Acta Biochim Biophys Sin (Shanghai); 2010 Jun; 42(6):410-7. PubMed ID: 20539941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti.
    Pellock BJ; Teplitski M; Boinay RP; Bauer WD; Walker GC
    J Bacteriol; 2002 Sep; 184(18):5067-76. PubMed ID: 12193623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.