These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26574727)

  • 1. An empirically adjusted approach to reproductive number estimation for stochastic compartmental models: A case study of two Ebola outbreaks.
    Brown GD; Oleson JJ; Porter AT
    Biometrics; 2016 Jun; 72(2):335-43. PubMed ID: 26574727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
    Lekone PE; Finkenstädt BF
    Biometrics; 2006 Dec; 62(4):1170-7. PubMed ID: 17156292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially-heterogeneous embedded stochastic SEIR models for the 2014-2016 Ebola outbreak in West Africa.
    Martinez K; Brown G; Pankavich S
    Spat Spatiotemporal Epidemiol; 2022 Jun; 41():100505. PubMed ID: 35691641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential for large outbreaks of Ebola virus disease.
    Camacho A; Kucharski AJ; Funk S; Breman J; Piot P; Edmunds WJ
    Epidemics; 2014 Dec; 9():70-8. PubMed ID: 25480136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adequacy of SEIR models when epidemics have spatial structure: Ebola in Sierra Leone.
    Getz WM; Salter R; Mgbara W
    Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180282. PubMed ID: 31056043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion.
    Shahtori NM; Ferdousi T; Scoglio C; Sahneh FD
    Math Biosci Eng; 2018 Oct; 15(5):1165-1180. PubMed ID: 30380305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanistic spatio-temporal framework for modelling individual-to-individual transmission-With an application to the 2014-2015 West Africa Ebola outbreak.
    Lau MSY; Gibson GJ; Adrakey H; McClelland A; Riley S; Zelner J; Streftaris G; Funk S; Metcalf J; Dalziel BD; Grenfell BT
    PLoS Comput Biol; 2017 Oct; 13(10):e1005798. PubMed ID: 29084216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-based analysis of a small Ebola outbreak.
    Burch MG; Jacobsen KA; Tien JH; Rempala GA
    Math Biosci Eng; 2017 Feb; 14(1):67-77. PubMed ID: 27879120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outbreak of Ebola virus disease in the Democratic Republic of the Congo, April-May, 2018: an epidemiological study.
    Ebola Outbreak Epidemiology Team
    Lancet; 2018 Jul; 392(10143):213-221. PubMed ID: 30047375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-stage stochastic programming approach to epidemic resource allocation with equity considerations.
    Yin X; Büyüktahtakın IE
    Health Care Manag Sci; 2021 Sep; 24(3):597-622. PubMed ID: 33970390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian spatial modelling of Ebola outbreaks in Democratic Republic of Congo through the INLA-SPDE approach.
    Adegboye O; Gayawan E; James A; Adegboye A; Elfaki F
    Zoonoses Public Health; 2021 Aug; 68(5):443-451. PubMed ID: 33780159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ebola virus disease outbreak in Korea: use of a mathematical model and stochastic simulation to estimate risk.
    Ko Y; Lee SM; Kim S; Ki M; Jung E
    Epidemiol Health; 2019; 41():e2019048. PubMed ID: 31801320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting Ebola with a regression transmission model.
    Asher J
    Epidemics; 2018 Mar; 22():50-55. PubMed ID: 28342787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling contact tracing in outbreaks with application to Ebola.
    Browne C; Gulbudak H; Webb G
    J Theor Biol; 2015 Nov; 384():33-49. PubMed ID: 26297316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating infectious duration-dependent transmission into Bayesian epidemic models.
    Ward C; Brown GD; Oleson JJ
    Biom J; 2023 Mar; 65(3):e2100401. PubMed ID: 36285663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ebola Virus Disease: A Perspective for the United States.
    Madariaga MG
    Am J Med; 2015 Jul; 128(7):682-91. PubMed ID: 25731139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent Transmission Rates Using the SEIR Model.
    Smirnova A; deCamp L; Chowell G
    Bull Math Biol; 2019 Nov; 81(11):4343-4365. PubMed ID: 28466232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling household and community transmission of Ebola virus disease: Epidemic growth, spatial dynamics and insights for epidemic control.
    Kiskowski M; Chowell G
    Virulence; 2016; 7(2):163-73. PubMed ID: 26399855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling spatial invasion of Ebola in West Africa.
    D'Silva JP; Eisenberg MC
    J Theor Biol; 2017 Sep; 428():65-75. PubMed ID: 28551366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the dynamics of Ebola epidemics.
    Legrand J; Grais RF; Boelle PY; Valleron AJ; Flahault A
    Epidemiol Infect; 2007 May; 135(4):610-21. PubMed ID: 16999875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.