These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26575003)

  • 1. Real-time modulated nanoparticle separation with an ultra-large dynamic range.
    Zeming KK; Thakor NV; Zhang Y; Chen CH
    Lab Chip; 2016 Jan; 16(1):75-85. PubMed ID: 26575003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation.
    Dukhin S; Zhu C; Dave RN; Yu Q
    Adv Colloid Interface Sci; 2005 Jun; 114-115():119-31. PubMed ID: 15936286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface.
    Regtmeier J; Käsewieter J; Everwand M; Anselmetti D
    J Sep Sci; 2011 May; 34(10):1180-3. PubMed ID: 21442752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet size based separation by deterministic lateral displacement-separating droplets by cell--induced shrinking.
    Joensson HN; Uhlén M; Svahn HA
    Lab Chip; 2011 Apr; 11(7):1305-10. PubMed ID: 21321749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of process parameters on separation efficiency in a deterministic lateral displacement device.
    Aghajanloo B; Inglis DW; Ejeian F; Tehrani AF; Esfahani MHN; Saghafian M; Canavese G; Marasso SL
    J Chromatogr A; 2022 Aug; 1678():463295. PubMed ID: 35878543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels.
    Li F; Hill RJ
    J Colloid Interface Sci; 2013 Mar; 394():1-12. PubMed ID: 23153681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations.
    Vahey MD; Voldman J
    Lab Chip; 2011 Jun; 11(12):2071-80. PubMed ID: 21541439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle separation using virtual deterministic lateral displacement (vDLD).
    Collins DJ; Alan T; Neild A
    Lab Chip; 2014 May; 14(9):1595-603. PubMed ID: 24638896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip controlled surfactant-DNA coil-globule transition by rapid solvent exchange using hydrodynamic flow focusing.
    Iliescu C; Mărculescu C; Venkataraman S; Languille B; Yu H; Tresset G
    Langmuir; 2014 Nov; 30(44):13125-36. PubMed ID: 25351469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using flow to switch the valency of bacterial capture on engineered surfaces containing immobilized nanoparticles.
    Fang B; Gon S; Park MH; Kumar KN; Rotello VM; Nüsslein K; Santore MM
    Langmuir; 2012 May; 28(20):7803-10. PubMed ID: 22563906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charged nanoparticle in a nanochannel: Competition between electrostatic and dielectrophoretic forces.
    Hulings ZK; Melnikov DV; Gracheva ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062713. PubMed ID: 26172742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip.
    Chen HM; Pang L; Gordon MS; Fainman Y
    Small; 2011 Oct; 7(19):2750-7. PubMed ID: 21842478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach.
    Chekli L; Phuntsho S; Roy M; Lombi E; Donner E; Shon HK
    Water Res; 2013 Sep; 47(13):4585-99. PubMed ID: 23764608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of polytetrafluoroethylene nanoparticle films using repulsive electrostatic interactions.
    Du C; Wang J; Chen D
    Langmuir; 2014 Feb; 30(4):976-83. PubMed ID: 24409997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic effects of charged nanoparticles in microfluidic Couette flow.
    Choi CJ; Jang SP; Choi SU
    J Colloid Interface Sci; 2011 Nov; 363(1):59-63. PubMed ID: 21831393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filtration at the microfluidic level: enrichment of nanoparticles by tunable filters.
    Boettcher M; Schmidt S; Latz A; Jaeger MS; Stuke M; Duschl C
    J Phys Condens Matter; 2011 Aug; 23(32):324101. PubMed ID: 21795763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tipping the balance of deterministic lateral displacement devices using dielectrophoresis.
    Beech JP; Jönsson P; Tegenfeldt JO
    Lab Chip; 2009 Sep; 9(18):2698-706. PubMed ID: 19704986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reluctance of a neutral nanoparticle to enter a charged pore.
    Getfert S; Töws T; Reimann P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052710. PubMed ID: 24329299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.