BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 26575302)

  • 21. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering.
    Zhu L; Meng Z; Hu S; Zhao T; Zhao B
    ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film.
    Park S; Lee J; Ko H
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44088-44095. PubMed ID: 29172436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Label-Free SERS Quantum Semiconductor Probe for Molecular-Level and in Vitro Cellular Detection: A Noble-Metal-Free Methodology.
    Keshavarz M; Tan B; Venkatakrishnan K
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):34886-34904. PubMed ID: 30239189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Performance Surface-Enhanced Raman Scattering Substrates Based on the ZnO/Ag Core-Satellite Nanostructures.
    Sun Q; Xu Y; Gao Z; Zhou H; Zhang Q; Xu R; Zhang C; Yao H; Liu M
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermally stable plasmonic nanocermets grown on microengineered surfaces as versatile surface enhanced Raman spectroscopy sensors for multianalyte detection.
    Gupta N; Gupta D; Aggarwal S; Siddhanta S; Narayana C; Barshilia HC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22733-42. PubMed ID: 25456045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning plasmons on nano-structured substrates for NIR-SERS.
    Mahajan S; Abdelsalam M; Suguwara Y; Cintra S; Russell A; Baumberg J; Bartlett P
    Phys Chem Chem Phys; 2007 Jan; 9(1):104-9. PubMed ID: 17164891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering.
    Lee JP; Chen D; Li X; Yoo S; Bottomley LA; El-Sayed MA; Park S; Liu M
    Nanoscale; 2013 Dec; 5(23):11620-4. PubMed ID: 24126702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple.
    Losurdo M; Yi C; Suvorova A; Rubanov S; Kim TH; Giangregorio MM; Jiao W; Bergmair I; Bruno G; Brown AS
    ACS Nano; 2014 Mar; 8(3):3031-41. PubMed ID: 24575951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-Organic Frameworks/Heterojunction Structures for Surface-Enhanced Raman Scattering with Enhanced Sensitivity and Tailorability.
    Yuan W; Jiao K; Yuan H; Sun H; Lim EG; Mitrovic I; Duan S; Cong S; Yong R; Li F; Song P
    ACS Appl Mater Interfaces; 2024 May; 16(20):26374-26385. PubMed ID: 38716706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing charge transfer of SERS by the combination of amorphous Al
    Minh Huyen LT; Phuc NT; Doan Khanh HT; Tuan Hung LV
    RSC Adv; 2023 Mar; 13(14):9732-9748. PubMed ID: 37008403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.
    Patra PP; Chikkaraddy R; Tripathi RP; Dasgupta A; Kumar GV
    Nat Commun; 2014 Jul; 5():4357. PubMed ID: 25000476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchical metal/semiconductor nanostructure for efficient water splitting.
    Thiyagarajan P; Ahn HJ; Lee JS; Yoon JC; Jang JH
    Small; 2013 Jul; 9(13):2341-7. PubMed ID: 23292824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS).
    Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermally activated Cu/Cu2S/ZnO nanoarchitectures with surface-plasmon-enhanced Raman scattering.
    Lin YG; Hsu YK; Chuang CJ; Lin YC; Chen YC
    J Colloid Interface Sci; 2016 Feb; 464():66-72. PubMed ID: 26609924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids.
    He X; Wang H; Li Z; Chen D; Liu J; Zhang Q
    Nanoscale; 2015 May; 7(18):8619-26. PubMed ID: 25899553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates.
    Lu F; Guo Y; Wang Y; Song W; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():83-87. PubMed ID: 29395930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parallel fabrication of plasmonic nanocone sensing arrays.
    Horrer A; Schäfer C; Broch K; Gollmer DA; Rogalski J; Fulmes J; Zhang D; Meixner AJ; Schreiber F; Kern DP; Fleischer M
    Small; 2013 Dec; 9(23):3987-92, 4088. PubMed ID: 24302595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monodispersed mesoscopic star-shaped gold particles via silver-ion-assisted multi-directional growth for highly sensitive SERS-active substrates.
    Kim S; Yoo S; Nam DH; Kim H; Hafner JH; Lee S
    Nano Converg; 2024 Jul; 11(1):26. PubMed ID: 38965160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.